scholarly journals Application of reverse osmosis at NPP and verification of the process for primary coolant treatment in temelín nuclear power

2021 ◽  
Vol 7 (2) ◽  
pp. 1-7
Author(s):  
Skala M. ◽  
Kůs P. ◽  
Kotowski J. ◽  
Kořenková H.

Drained primary coolant from nuclear power plants containing boric acid is currently treated in the system of evaporators and by ion exchangers. Reverse osmosis as an alternative process to evaporator was investigated. Using reverse osmosis, the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of concentrated boric acid solution together with other components, while permeate stream consists of purified water. In the first phase ofthe project the reverse osmosis modules from several manufactures were tested on a batch laboratory apparatus. Certain modifications to the pH of the feed solution were needed to enable the tested membranes to concentrate the H3BO3 in the retentate stream, separate from the pure water in the permeate stream. Furthermore, the separation capability for other compounds present in primary coolant such as K, Li or NH3 were evaluated. In the final phase of the project the pilot-plant unit of reverse osmosis was tested in nuclear power plant Temelín. It was installed in the Special Purification System SVO-6 for the regeneration of boric acid. The aim of the tests performed in Temelín nuclear power plant was to verify possible use of reverse osmosis for the treatment of primary coolant.

2016 ◽  
Vol 300 ◽  
pp. 107-116 ◽  
Author(s):  
Šárka Bártová ◽  
Pavel Kůs ◽  
Martin Skala ◽  
Kateřina Vonková

Author(s):  
V. V. Sorokin

Localizing safety systems are provided to contain radioactive substances in an accident and attenuate ionizing radiation at a modern nuclear power plant. Together with radioactive substances, hydrogen is also retained, which is formed during the decomposition of the primary coolant. The accumulation of hydrogen in the presence of oxygen from the atmosphere in the accident localization zone carries the danger of the formation of flammable and explosive concentrations of these components. Nuclear power plant (NPP) deigns with water-water energetic reactor (WWER) provides for a hydrogen removal system including passive catalytic hydrogen recombiners. The device capacity  is confirmed experimentally under reference conditions (lean air-hydrogen mixture, pressure and temperature close to normal, no interference with gas exchange). Capacity is an important safety parameter. In the event of an accident, conditions inside the ealed enclosure of the localizing system of NPP with WWER can  differ from the reference  ones and affect the capacity.  On the basis of calculations, the operation of recombiners with lack of  oxygen  and with hindered  gas exchange has been investigated in the paper. The decrease in capacity with lack of oxygen reaches 50 %, which is mainly  caused by an increase in underburning. Compared to the reference conditions, the effect is more pronounced in the event of an accident – 60–70 %. The hindered gas exchange is modeled by a decrease in the height of recombiner traction channel. This case can be reduced to the placement of the device in cramped conditions and the effect of the atmosphere speed inside the enclosure. Regardless of the hydrogen concentration, the operating characteristic of the device remains linear, with a two-fold decrease in height leads to a decrease in capacity by 20 %. The results can be used to substantiate the safety of NPPs with WWER and to review on the safety subtantiation of power units.


Author(s):  
Yi-Hsiang Cheng ◽  
Chunkuan Shih ◽  
Jong-Rong Wang ◽  
Hao-Tzu Lin

Pressurizer plays an important role in controlling the pressure of the primary coolant system in pressurized water reactor (PWR) power plants. An accurate modelling of the pressurizer is needed to determine the pressure histories of the primary coolant system, and thus to successfully simulate overall PWR power plant behavior during transients. The purpose of this study is to develop a pressurizer model, and to assess its pressure transients using the TRACE code version 5.0. The benchmark of the pressurizer model was performed by comparing the simulation results with those from the tests at the Maanshan nuclear power plant. Four start-up tests of the Maanshan nuclear power plant are collected and simulated: 1) turbine trip test from 100% power; 2) large-load reduction at 100% power; 3) net-load trip at 100% power; and 4) net-load trip at 50% power. The simulation results are in reasonable agreement with the start-up tests, and thus the pressurizer model built in this study is successfully verified and validated.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Vanderley Vasconcelos ◽  
Wellington Antonio Soares ◽  
Raissa Oliveira Marques ◽  
Silvério Ferreira Silva Jr ◽  
Amanda Laureano Raso

Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. This inspection is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI is reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components, such as FMEA (Failure Modes and Effects Analysis) and THERP (Technique for Human Error Rate Prediction). An example by using qualitative and quantitative assessesments with these two techniques to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues, is presented.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1467
Author(s):  
Sangdo Lee ◽  
Jun-Ho Huh ◽  
Yonghoon Kim

The Republic of Korea also suffered direct and indirect damages from the Fukushima nuclear accident in Japan and realized the significance of security due to the cyber-threat to the Republic of Korea Hydro and Nuclear Power Co., Ltd. With such matters in mind, this study sought to suggest a measure for improving security in the nuclear power plant. Based on overseas cyber-attack cases and attacking scenario on the control facility of the nuclear power plant, the study designed and proposed a nuclear power plant control network traffic analysis system that satisfies the security requirements and in-depth defense strategy. To enhance the security of the nuclear power plant, the study collected data such as internet provided to the control facilities, network traffic of intranet, and security equipment events and compared and verified them with machine learning analysis. After measuring the accuracy and time, the study proposed the most suitable analysis algorithm for the power plant in order to realize power plant security that facilitates real-time detection and response in the event of a cyber-attack. In this paper, we learned how to apply data for multiple servers and apply various security information as data in the security application using logs, and match with regard to application of character data such as file names. We improved by applying gender, and we converted to continuous data by resetting based on the risk of non-continuous data, and two optimization algorithms were applied to solve the problem of overfitting. Therefore, we think that there will be a contribution in the connection experiment of the data decision part and the optimization algorithm to learn the security data.


2021 ◽  
Author(s):  
S. W. Glass ◽  
Leonard S. Fifield ◽  
Mychal P. Spencer

Abstract Nuclear power plant cables were originally qualified for 40 year life and generally have not required specific test verification to assure service availability through the initial plant qualification period. However, license renewals to 60 and 80 years of operation require a cable aging management program that depends on some form of test and verification to assure fitness for service. Environmental stress (temperature, radiation, chemicals, water, and mechanical) varies dramatically within a nuclear power plant and, in some cases, cables have degraded and required repair or replacement before their qualified end-of-life period. In other cases, cable conditions have been mild and dependable cable performance confirmed to extend well beyond the initial qualified life. Most offline performance-based testing requires cables to be decoupled and de-energized for specially trained technicians to perform testing. These offline tests constitute an expensive operational burden that limits the economic viability of nuclear power plants. Although initial investment may be higher, new online test practices are emerging as options or complements to offline testing that avoid or minimize the regularly scheduled offline test burden. These online methods include electrical and fiber-optic partial discharge measurement, spread spectrum time or frequency domain reflectometry, distributed temperature profile measurements, and local interdigital capacitance measurement of insulation characteristics. Introduction of these methods must be supported by research to confirm efficacy plus either publicly financed or market driven investment to support the start-up expense of cost-effective instrumentation to monitor cable condition and assure reliable operation. This work summarizes various online cable assessment technologies plus introduces a new cable motor test bed to assess some of these technologies in a controlled test environment.


2021 ◽  
Author(s):  
Li Liang ◽  
Pan Rong ◽  
Ren Guopeng ◽  
Zhu Xiuyun

Abstract Almost all nuclear power plants in the world are equipped with seismic instrument system, especially the third generation nuclear power plants in China. When the ground motion measured by four time history accelerometers of containment foundation exceeds the preset threshold, the automatic shutdown trigger signal will be generated. However, from the seismic acceleration characteristics, isolated and prominent single high frequency will be generated the acceleration peak, which has no decisive effect on the seismic response, may cause false alarm, which has a certain impact on the smooth operation of nuclear power plant. According to the principle of three elements of ground motion, this paper puts forward a method that first selects the filtering frequency band which accords with the structural characteristics of nuclear power plants, then synthesizes the three axial acceleration time history, and finally selects the appropriate acceleration peak value for threshold alarm. The results show that the seismic acceleration results obtained by this method can well represent the actual magnitude of acceleration, and can solve the problem of false alarm due to the randomness of single seismic wave, and can be used for automatic reactor shutdown trigger signal of seismic acceleration.


Author(s):  
Liu Dongxu ◽  
Xu Dongling ◽  
Zhang Shuhui ◽  
Hu Xiaoying

The probability that the safety I&C system fails to actuate or advertently actuates RT or ESF functions, in part, essentially determines whether a nuclear power plant could operate safely and efficiently. Since more conservative assumptions and simplifications are introduced during the analysis, this paper achieves solid results by performing the modeling and calculation based on a relatively simple approach, the reliability block diagram (RBD) method. A typical safety I&C platform structure is involved in the model presented in this paper. From the perspective of conservation and simplicity, some assumptions are adopted in this paper. A group of formulas is derived in this paper based on Boolean algebra, probability theory, basic reliability concepts and equations, to facilitate the calculations of probabilities that the safety I&C system fails to actuate or advertently actuates RT or ESF functions. All the inputs of the analysis and calculation in this paper, which includes the I&C platform structure, the constitution of the hardware modules, and reliability data, are referenced to the nuclear power plant universal database where applicable. Although the conclusion drawn in the paper doesn’t apply to the I&C platform assessment for a specific plant, the method of modeling and process of analysis provides an illustration of an alternative quantitative reliability assessment approach for a typical safety I&C system installed in the nuclear power plant.


Author(s):  
V. A. Khrustalev ◽  
M. V. Garievskii

The article presents the technique of an estimation of efficiency of use of potential heat output of an auxiliary boiler (AB) to improve electric capacity and manoeuvrability of a steam turbine unit of a power unit of a nuclear power plant (NPP) equipped with a water-cooled water-moderated power reactor (WWER). An analysis of the technical characteristics of the AB of Balakovo NPP (of Saratov oblast) was carried out and hydrocarbon deposits near the NPP were determined. It is shown that in WWER nuclear power plants in Russia, auxiliary boilers are mainly used only until the normal operation after start-up whereas auxiliary boiler equipment is maintained in cold standby mode and does not participate in the generation process at power plants. The results of research aimed to improve the systems of regulation and power management of power units; general principles of increasing the efficiency of production, transmission and distribution of electric energy, as well as the issues of attracting the potential of energy technology sources of industrial enterprises to provide load schedules have been analyzed. The possibility of using the power complex NPP and the AB as a single object of regulation is substantiated. The authors’ priority scheme-parametric developments on the possibility of using the thermal power of the auxiliary boilers to increase the power of the steam turbine of a nuclear power plant unit equipped with WWER reactors unit during peak periods, as well as the enthalpy balance method for calculating heat flows, were applied. The surface area of the additional heater of the regeneration “deaerator – high pressure heaters” system and its cost were calculated. On the basis of calculations, it was shown that the additional power that can be obtained in the steam turbine of the NPP with a capacity of 1200 MW due to the use of heat of the modernized auxiliary boiler in the additional heat exchanger is 40.5 MW. The additional costs for the implementation of the heat recovery scheme of the auxiliary boiler at different prices for gas fuel and the resulting system effect were estimated in an enlarged way. Calculations have shown the acceptability of the payback period of the proposed modernization.


Sign in / Sign up

Export Citation Format

Share Document