An Archean Porphyry-Type Gold Deposit: The Côté Gold Au(-Cu) Deposit, Swayze Greenstone Belt, Superior Province, Ontario, Canada

2020 ◽  
Author(s):  
Laura R. Katz ◽  
Daniel J. Kontak ◽  
Benoît Dubé ◽  
Vicki McNicoll ◽  
Robert Creaser ◽  
...  

Abstract The Archean low-grade, large-tonnage Côté Gold Au(-Cu) deposit is the first large gold deposit discovered in the Swayze greenstone belt, Ontario, Canada. The deposit is hosted by the Chester Intrusive Complex, a low-Al composite, subvolcanic intrusion composed of tonalite, quartz diorite, and diorite that was previously constrained to ca. 2741 to 2739 Ma (U-Pb zircon). Presented here is the first detailed study of the mineralization and related alteration, along with the relative and absolute age (U-Pb, Re-Os) constraints on gold mineralization. The earliest hydrothermal stage is represented by rare Au-bearing amphibole-rich veins and breccias. The main ore stage consists of biotite-rich alteration centered on an Au(-Cu)–bearing magmatic-hydrothermal biotite breccia body with spatially related disseminated biotite and veins of both sheeted and stockwork type. Extensive fracture-controlled and replacement-style Au ± Cu-bearing muscovite alteration overprints biotite-altered rocks in the core of the deposit. Barren fracture-controlled and disseminated epidote alteration is localized to the north of the deposit and above the magmatic-hydrothermal biotite breccia. Late, texturally destructive albite alteration overprints the mineralized hydrothermal alteration in the deposit core. U-Pb isotope dilution-thermal ionization mass spectrometry and laser ablation-inductively coupled plasma-mass spectrometry ages for hydrothermal titanite from amphibole (2745 ± 3 Ma) and albite (2737.5 +2.2/–1.8, 2745 ± 9, and 2736 ± 7 Ma) alteration assemblages constrain hydrothermal activity to ca. 2740 Ma. The timing of gold and sulfide mineralization is also constrained by two Re-Os molybdenite ages of 2736.1 ± 11.4 (biotite alteration) and 2746.8 ± 11.4 Ma (muscovite alteration). These new ages overlap with the ca. 2741 to 2739 Ma magmatism for the Chester Intrusive Complex, thereby suggesting a synintrusion, magmatic-hydrothermal origin for the gold mineralization and related alteration. This is significant, as it represents a new gold metallogenic event in the Abitibi subprovince, for which regional importance remains to be defined. Considering the spatial association of the deposit with a dioritic intrusion and the temporal overlap of igneous activity with alteration (i.e., amphibole, biotite, sericite) and mineralization (i.e., breccias, veins, disseminations), the deposit is interpreted as an Archean magmatic-hydrothermal ore system sharing analogies with Phanerozoic Au-Cu porphyry deposits. It suggests that Archean porphyry-type deposits can form in low-Al composite intrusions, which are known to host Cu-Mo-Au breccia, vein, and disseminated mineralization and underlie temporally and genetically related felsic to intermediate volcanic rocks that host volcanogenic massive sulfide deposits.

Geochronology ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 187-208
Author(s):  
Johannes E. Pohlner ◽  
Axel K. Schmitt ◽  
Kevin R. Chamberlain ◽  
Joshua H. F. L. Davies ◽  
Anne Hildenbrand ◽  
...  

Abstract. Baddeleyite (ZrO2) is widely used in U–Pb geochronology but analysis and age interpretation are often difficult, especially for samples which have experienced post-intrusive alteration and/or metamorphism. Here, we combine high spatial resolution (secondary ionization mass spectrometry, SIMS) and high-precision (isotope dilution thermal ionization mass spectrometry, ID-TIMS) analyses of baddeleyite from the Spread Eagle Intrusive Complex (SEIC) and Cape St. Mary's sills (CSMS) from Newfoundland. Literature data and our own detailed microtextural analysis suggest that at least seven different types of baddeleyite–zircon intergrowths can be distinguished in nature. These include secondary baddeleyite inclusions in altered zircon, previously unreported from low-grade rocks, and likely the first discovery of xenocrystic zircon inclusions mantled by baddeleyite. 207Pb∕206Pb baddeleyite dates from SIMS and ID-TIMS mostly overlap within uncertainties. However, some SIMS sessions of grain mounts show reverse discordance, suggesting that bias in the U ∕ Pb relative sensitivity calibration affected 206Pb∕238U dates, possibly due to crystal orientation effects, and/or alteration of baddeleyite crystals, which is indicated by unusually high common-Pb contents. ID-TIMS data for SEIC and CSMS single baddeleyite crystals reveal normal discordance as linear arrays with decreasing 206Pb∕238U dates, indicating that their discordance is dominated by recent Pb loss due to fast pathway diffusion or volume diffusion. Hence, 207Pb∕206Pb dates are more reliable than 206Pb∕238U dates even for Phanerozoic baddeleyite. Negative lower intercepts of baddeleyite discordia trends for ID-TIMS dates for SEIC and CSMS and direct correlations between ID-TIMS 207Pb∕206Pb dates and the degree of discordance may indicate preferential 206Pb loss, possibly due to 222Rn mobilization. In such cases, the most reliable crystallization ages are concordia upper intercept dates or weighted means of the least discordant 207Pb∕206Pb dates. We regard the best estimates of the intrusion ages to be 498.7±4.5 Ma (2σ; ID-TIMS upper intercept date for one SEIC dike) and 439.4±0.8 Ma (ID-TIMS weighted mean 207Pb∕206Pb date for one sill of CSMS). This first radiometric age for the SEIC is consistent with stratigraphic constraints and indicates a magmatic episode prior to opening of the Rheic Ocean. Sample SL18 of the Freetown Layered Complex (FLC), Sierra Leone, was investigated as an additional reference. For SL18, we report a revised 201.07±0.64 Ma intrusion age, based on a weighted mean 207Pb∕206Pb date of previous and new baddeleyite ID-TIMS data, agreeing well with corresponding SIMS data. Increasing discordance with decreasing crystal size in SL18 indicates that Pb loss affected baddeleyite rims more strongly than cores. Our SL18 results validate that the SIMS in situ approach, previously used for Precambrian and Paleozoic samples, is also suitable for Mesozoic baddeleyite.


Author(s):  
Valbone Memeti ◽  
Scott R. Paterson ◽  
Roland Mundil

The initiation of pluton formation is rarely preserved as the rock record is typically overprinted by younger intruding pulses. An exception is the 80 km2 Kuna Crest lobe, which marks the initiation of the 95−85 Ma, 1100 km2 Tuolumne Intrusive Complex in the Sierra Nevada, California, USA. We present a detailed map of the lithologies and structure of the Kuna Crest lobe, associated sheeted complex and satellite plutons, and their host rocks, using chemical abrasion−isotope dilution−thermal ionization mass spectrometry and laser ablation−inductively coupled plasma−mass spectrometry U-Pb zircon geochronology, element and isotope geochemistry, and Al-in-hornblende thermobarometry to conclude the following: (a) The 94.91 ± 0.53 Ma to 92.75 ± 0.11 Ma Kuna Crest lobe and its marginal sheeted complex preserved the oldest intrusive pulses and most mantle-like compositions of the entire Tuolumne Intrusive Complex. (b) Emplacement began with magma wedging of low volume magma pulses resulting in a sheeted complex that is compositionally heterogeneous at outcrop scales, but isotopically homogeneous. (c) These early magmas established a pre-heated pathway within just a few hundreds of thousands of years that gave way to the formation of the ∼1.5 million-year-long active, compositionally more homogeneous but isotopically more heterogeneous magma mush across the Kuna Crest lobe. The host rocks and previously intruded magma were displaced largely vertically through downward flow. (d) The melt-interconnected mush zone in the lobe allowed for magma mixing and crystal-liquid separation at the emplacement level. We interpret this lobe to represent an upper- to mid-crustal, vertical magma transfer zone that likely fed shallower plutons and potentially volcanic eruptions. We propose a filter pressing mechanism driven by vertical magma transport through the lobe resulting in margin-parallel fabrics, plagioclase-rich crystal cumulates, inward draining and upward loss (of up to 40%) of interstitial melts. Some inward drained melts hybridized with later intruding Half Dome magmas at the transition to the main Tuolumne Intrusive Complex. Some of the lobe magmas, including fractionated melts, drained laterally into the strain shadow of the lobe to form the satellite plutons, further contributing to cumulate formation in the lobe. This study documents that within only a few hundreds of thousands of years, arc magma plumbing systems are capable of establishing a focused magma pathway to build up to increasingly larger magma bodies that are capable of undergoing magma differentiation and feeding shallower plutons and volcanic eruptions.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 966
Author(s):  
Baptiste Madon ◽  
Lucie Mathieu ◽  
Jeffrey H. Marsh

Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with magmatism, however, remains controversial for many greenstone belt hosted Au deposits. To precisely identify the link between syntectonic magmas and gold mineralization in the Abitibi Subprovince, major and trace-element compositions of whole rock, zircon, apatite, and amphibole grains were measured for five intrusions in the Chibougamau area; the Anville, Saussure, Chevrillon, Opémisca, and Lac Line Plutons. The selected intrusions are representative of the chemical diversity of synvolcanic (TTG suite) and syntectonic (e.g., sanukitoid, alkaline intrusion) magmatism. Chemical data enable calculation of oxygen fugacity and volatile content, and these parameters were interpreted using data collected by electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The zircon and apatite data and associated oxygen fugacity values in magma indicate that the youngest magmas are the most oxidized. Moreover, similar oxygen fugacity and high volatile content for both the Saussure Pluton and the mineralized Lac Line intrusion may indicate a possible prospective mineralized system associated with the syntectonic Saussure intrusion.


2020 ◽  
Vol 115 (6) ◽  
pp. 1213-1226 ◽  
Author(s):  
Alexander E. Marfin ◽  
Alexei V. Ivanov ◽  
Vadim S. Kamenetsky ◽  
Adam Abersteiner ◽  
Tamara Yu. Yakich ◽  
...  

Abstract The Norilsk-Talnakh ore district in the northwestern Siberian platform contains globally unique reserves of Cu-Ni-sulfides with Pt and, especially, Pd. The Oktyabrsk deposit, which is one of the largest in the district, is spatially and genetically associated with the Kharaelakh mafic-ultramafic intrusion and its exceptionally large metamorphic and metasomatic aureoles. In this study, we employed in situ laser ablation-inductively coupled plasma-mass spectrometry U-Pb isotope dating of apatite, titanite, garnet, and perovskite that cocrystallize with disseminated sulfides within the aureole of metasomatic and contact metamorphic rocks. The calculated isotopic ages for apatite (257.3 ± 4.5 and 248.9 ± 5.1 Ma), titanite (248.6 ± 6.8 and 249.1 ± 2.9 Ma), garnet (260.0 ± 11.0 Ma), and perovskite (247.3 ± 8.2 Ma), though with large uncertainties, indicate that sulfide mineralization within metasomatic and contact-metamorphic rocks is coeval with the emplacement of the Kharaelakh intrusion. These isotopic dates are in complete agreement with the published isotope dilution-thermal ionization mass spectrometry U-Pb zircon ages for the Norilsk intrusions and, at the same time, notably older than available Re-Os isochron ages of sulfides. The latter ages have been long interpreted as evidence for a prolonged duration of magmatic ore-forming processes; however, our data narrow their life span. Trace elements in titanite and garnet allow distinguishing late- and postmagmatic grains, which show indistinguishable U-Pb isotope ages.


2005 ◽  
Vol 42 (6) ◽  
pp. 895-934 ◽  
Author(s):  
Venessa Bennett ◽  
Valerie A Jackson ◽  
Toby Rivers ◽  
Carolyn Relf ◽  
Pat Horan ◽  
...  

U–Pb zircon crystallization ages determined by isotope dilution – thermal ionization mass spectrometry (ID–TIMS) and laser ablation microprobe – inductively coupled plasma – mass spectrometry (LAM–ICP–MS) for 13 intrusive units in the Neoarchean Snare River terrane (SRT) provide tight constraints on the timing of crust formation and orogenic evolution. Seven metaluminous plutons were emplaced over ~80 Ma from ca. 2674 to 2589 Ma, whereas six peraluminous bodies were emplaced in a ~15 Ma interval from ca. 2598 to 2585 Ma. A detrital zircon study yielded an age spectrum with peaks correlative with known magmatic events in the Slave Province, with the ca. 2635 Ma age of the youngest detrital zircon population providing a maximum estimate for the onset of sedimentation. This age contrasts with evidence for pre-2635 Ma sedimentation elsewhere in the SRT, indicating that sedimentation was protracted and diachronous. Evolution of the SRT can be subdivided into four stages: (i) 2674–2635 Ma — formation of a metaluminous protoarc in a tonalite–trondhjemite–granodiorite (TTG) – granite–greenstone tectonic regime (TR1) and coeval with early turbidite sedimentation; (ii) 2635–2608 Ma — continued turbidite sedimentation, D1/M1 juxtaposition of turbidites and protoarc lithologies prior to ~2608 Ma, and metaluminous granitoid plutonism; (iii) 2608–2597 Ma — onset of TR2, collision of Snare protoarc with Central Slave Basement Complex, D2/M2 crustal thickening and mid-crustal granulite-facies metamorphism, sychronous with metaluminous and peraluminous plutonism; and (iv) 2597–2586 Ma — orogenic collapse, D3/M3 mid-crustal uplift, granulite-facies metamorphism, and waning metaluminous and peraluminous plutonism. The distribution of igneous rocks yields an "orogenic stratigraphy" with an older upper crust underlain by a younger synorogenic mid-crust. These data can be used to provide constraints for the interpretation of the Slave – Northern Cordillera Lithospheric Evolution (SNORCLE) Lithoprobe transect.


2020 ◽  
Author(s):  
Ni Tang ◽  
Nina Siebers ◽  
Erwin Klumpp

<p>Nanosized mineral particles and organic matter (<100 nm) ,as well as their associations, belong to the most important ingredients for the formation of the soil aggregate structure being a hierarchically organized system. Colloids (< 220 nm) including nanoparticles can be occluded as primary building units of soil aggregates. Nevertheless, a large proportion of these colloids is mobile and presents in the solution phase (as “free”) within the soil matrix. However, the differences between “free” and occluded colloids remain unclear.</p><p>Here, both occluded and free colloids were isolated from soil samples of an arable field with different clay contents (19% and 34%) using wet sieving and centrifugation. The release of occluded colloids from soil macroaggregates (>250 µm) was carried out with ultrasonic treatment at 1000 J mL<sup>-1</sup>. The free and occluded colloidal fractions were then characterized for their size-resolved elemental composition using flow field-flow fractionation inductively coupled plasma mass spectrometry and organic carbon detector (FFF-ICP-MS/OCD). In addition, selected samples were also subjected to transmission electron microscopy as well as pyrolysis field ionization mass spectrometry (Py-FIMS).</p><p>Both, free and occluded colloids were composed of three size fractions: nanoparticles <20 nm, medium-sized nanoparticles (20 nm–60 nm), and, fine colloids (60 nm–220 nm). The fine colloid fraction was the dominant size fraction in both free and occluded colloids, which mainly consist of organic carbon, Al, Si, and Fe, probably present as phyllosilicates and associations of Fe- and Al- (hydr)oxides and organic matter. However, the organic matter contents for all three size fractions were higher for the occluded colloids than for the free ones. The role of OM concentration and composition in these colloids will be discussed in the paper.</p>


Sign in / Sign up

Export Citation Format

Share Document