scholarly journals Syngas Characteristics from UCG Gasification Process with Lignite and Subbituminous Coal Types

Author(s):  
Sarmidi ◽  
Muhammad Yerizam ◽  
Aida Syarif

Underground Coal Gasification (UCG) is the process of converting the materials used to make synthetic gas in a feasible and economically attractive manner as a method for harnessing energy from underground coal sources. Coal gasification will produce a gas producer in the form of synthetic gas (syngas) with the main components consisting of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2) and nitrogen (N2) and low pollutants. The highest temperature produced with MT 47 lignite coal using an oxygen velocity of 5 liters/minute was 2400 C at the 35th minute, while the lowest temperature was 950 C at the 95th minute. For Subbituminous AL 51 coal using an oxygen velocity of 5 liters/minute, the highest temperature is 3540 C at 75 minutes, while the lowest temperature is 1060 C at 130 minutes. At an oxygen velocity of 5 liters/minute the flash point / burn test is on the MT 47 lignite coal type in the 10th minute and at a temperature of 1700 C. Meanwhile, the AL 51 subbituminous coal type is in the 30th minute and at a temperature of 3130 C. Based on the discussion and analysis of data from the gasification test of lignite and subbituminous coal with variations in oxygen velocity of 5 liters/minute, the results obtained are that lignite coal burns faster (burn test) in the 10th minute at a temperature of 1700 C, in the subbituminous type it has higher temperature 3130 C and longer burn test at 30 minutes.

Author(s):  
Marian Wiatowski ◽  
Roksana Muzyka ◽  
Krzysztof Kapusta ◽  
Maciej Chrubasik

AbstractIn this study, the composition of tars collected during a six-day underground coal gasification (UCG) test at the experimental mine ‘Barbara’ in Poland in 2013 was examined. During the test, tar samples were taken every day from the liquid product separator and analysed by the methods used for testing properties of typical coke oven (coal) tar. The obtained results were compared with each other and with the data for coal tar. As gasification progressed, a decreasing trend in the water content and an increasing trend in the ash content were observed. The tars tested were characterized by large changes in the residue after coking and content of parts insoluble in toluene and by smaller fluctuations in the content of parts insoluble in quinoline. All tested samples were characterized by very high distillation losses, while for samples starting from the third day of gasification, a clear decrease in losses was visible. A chromatographic analysis showed that there were no major differences in composition between the tested tars and that none of the tar had a dominant component such as naphthalene in coal tar. The content of polycyclic aromatic hydrocarbons (PAHs) in UCG tars is several times lower than that in coal tar. No light monoaromatic hydrocarbons (benzene, toluene, ethylbenzene and xylenes—BTEX) were found in the analysed tars, which results from the fact that these compounds, due to their high volatility, did not separate from the process gas in the liquid product separator.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6533
Author(s):  
Magdalena Pankiewicz-Sperka ◽  
Krzysztof Kapusta ◽  
Wioleta Basa ◽  
Katarzyna Stolecka

One of the most important issues during UCG process is wastewater production and treatment. Condensed gasification wastewater is contaminated by many hazardous compounds. The composition of the generated UCG-derived wastewater may vary depending on the type of gasified coal and conditions of the gasification process. The main purpose of this study was a qualitative and quantitative characterization of the UCG wastewater produced during four different UCG experiments. Experiments were conducted using semi-anthracite and bituminous coal samples at two distinct pressures, i.e., 20 and 40 bar. The conducted studies revealed significant relationships between the physicochemical composition of the wastewater and the coal properties as well as the gasification pressure. The strongest impact is noticeable in the case of organic pollutants, especially phenols, BTEX and PAH’s. The most abundant group of pollutants were phenols. Conducted studies showed significantly higher concentration levels for bituminous coal: 29.25–49.5 mg/L whereas for semi-anthracite effluents these concentrations were in much lower range 2.1–29.7 mg/L. The opposite situation occurs for BTEX, higher concentrations were in wastewater from semi-anthracite gasification: 5483.1–1496.7 µg/L, while in samples from bituminous coal gasification average BTEX concentrations were: 2514.3–1354.4 µg/L. A similar relationship occurs for the PAH’s concentrations. The higher values were in case of wastewater from semi-anthracite coal experiments and were in range 362–1658 µg/L while from bituminous coal gasification PAH’s values are in lower ranges 407–1090 µg/L. The studies conducted have shown that concentrations of phenols, BTEX and PAH’s decrease with increasing pressure. Pearson’s correlation analysis was performed to enhance the interpretation of the obtained experimental data and showed a very strong relationship between three parameters: phenols, volatile phenols and CODcr.


Energy ◽  
2010 ◽  
Vol 35 (6) ◽  
pp. 2374-2386 ◽  
Author(s):  
Sateesh Daggupati ◽  
Ramesh N. Mandapati ◽  
Sanjay M. Mahajani ◽  
Anuradda Ganesh ◽  
D.K. Mathur ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 56-62 ◽  
Author(s):  
Hong Tao Liu ◽  
Hong Yao ◽  
Kai Yao ◽  
Feng Chen ◽  
Guang Qian Luo

According to the temperature, major chemical reactions and gas compositions, the gasification process along the tunnel of underground coal gasification is divided into three zones, i.e. oxidation zone, reduction zone and dry distillation zone. A model test in the laboratory was carried out by using large-scale coal blocks to simulate the coal seam. The characteristics of the “three zones”, and the relation between the temperature and gas composition were also quantitative studied. It provided the necessary basic knowledge for further studying the process of underground coal gasification, including predicting compositions of product gas, life-cycle analyzing, selecting optimistic control parameters and determining suitable gasification craft.


1975 ◽  
Vol 15 (05) ◽  
pp. 425-436 ◽  
Author(s):  
C.F. Magnani ◽  
S.M. Farouq Ali

Abstract This investigation focuses on mathematical modeling of the process of underground gasification of coal by the stream method. A one-dimensional, steady-state model consisting of five coupled differential equations was formulated, and the solution, extracted analytically, was used to develop closed-form expressions for the parameters influencing coal gasification. The model then was used for interpreting field performance curves, predicting the results of The performance curves, predicting the results of The field tests, and ascertaining the over-all process sensitivity to the input variables. The usefulness of the model was shown by establishing the parameters influencing the success or failure of parameters influencing the success or failure of an underground gasification project. Introduction One method of eliminating many of the technological and environmental difficulties encountered during the production of synthetic gas through aboveground coal gasification involves gasifying cod in situ. This process, known as underground coal gasification, was first proposed in 1868 by Sir William Siemens and is based on the controlled combustion of coal in situ. This in-situ combustion results in the production of an artificial or synthetic gas that is rich in carbon dioxide, carbon monoxide, hydrogen, and hydrocarbon gases. Despite the fact that reaction stoichiometry is a moot element of underground coal gasification, it is nonetheless believed thatcarbon dioxide is formed by the partial oxidation of coal,carbon monoxide is generated by the subsequent reduction of carbon dioxide, andthe hydrogen and hydrocarbon gases result from the water-gas reaction and carbonization of coal, respectively. To effect the controlled combustion of coal in situ, the coal seam first must be ignited and a means must be provided for supporting combustion (through injection of a suitable gasification agent) and producing the gases generated underground. Fig. 1 presents a schematic diagram of an underground gasification system that complies with these requirements. This approach to gasifying coal is known as the stream or channel method and necessitates drilling two parallel galleries, one serving as an injection gas inlet and the other as a producer gas outlet. These wells are then linked by a borehole drilled horizontally through the coal seam. Ignition occurs in the coal seam at the gas inlet and proceeds in the direction of flow. The combustion front thus generated moves essentially perpendicular to the direction of gas flow. perpendicular to the direction of gas flow.Since the technological inception of underground gasification, over 1,500 publications have appeared in the literature that bear testimony to the absence of a complete, legitimate, theoretical analysis of the underground gasification process. Given this observation, it is the basis of this paper that progress in underground coal-gasification research progress in underground coal-gasification research has suffered from the absence of "interpretative theory"; that is, it has suffered from a lack of logical, physical, and mathematical analysis of the governing and underlying aerothermochemical principles. The difficulties in formulating a principles. The difficulties in formulating a mathematical model adequately describing the numerous phenomena involved during coal gasification are indeed formidable. SPEJ P. 425


Author(s):  
Michael S. Blinderman

Underground Coal Gasification (UCG) is a gasification process carried on in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practiced by Ergo Exergy Technologies is called the Exergy UCG Technology or εUCG® Technology. The εUCG technology is being applied in numerous power generation and chemical projects worldwide. These include power projects in South Africa (1,200 MWe), India (750 MWe), Pakistan, and Canada, as well as chemical projects in Australia and Canada. A number of εUCG based industrial projects are now at a feasibility stage in New Zealand, USA, and Europe. An example of εUCG application is the Chinchilla Project in Australia where the technology demonstrated continuous, consistent production of commercial quantities of quality fuel gas for over 30 months. The project is currently targeting a 24,000 barrel per day synthetic diesel plant based on εUCG syngas supply. The εUCG technology has demonstrated exceptional environmental performance. The εUCG methods and techniques of environmental management are an effective tool to ensure environmental protection during an industrial application. A εUCG-IGCC power plant will generate electricity at a much lower cost than existing or proposed fossil fuel power plants. CO2 emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC.


Fuel ◽  
1990 ◽  
Vol 69 (11) ◽  
pp. 1454-1456 ◽  
Author(s):  
Anne Dufaux ◽  
Bénédicte Gaveau ◽  
René Létolle ◽  
Marc Mostade ◽  
Marianne Noël ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6464
Author(s):  
Krzysztof Skrzypkowski ◽  
Krzysztof Zagórski ◽  
Anna Zagórska

This article presents the results of laboratory tests regarding the influence of high temperatures on changes in the strength and structural parameters of rocks that are present in the immediate vicinity of a gasification channel. Sandstone and claystone samples were heated at 300 °C, 600 °C, 900 °C and 1200 °C. Additionally, the heated samples were placed in water for 24 h. The results of the laboratory tests were used in the numerical simulation using RS2 software. The main goal of modeling was to determine the extent of the rock destruction zone around the gasification channel for dry and wet rock masses. In the numerical simulations, three widths of the gasification channel and three ranges of high-temperature impact were modeled. On the basis of the obtained results, it was found that the extent of rock destruction, both in the roof and in the floor, is greater by several percent for a wet rock mass. For the first time, this research presents the effect of water on heated rock samples in terms of the underground coal gasification process. The results of laboratory tests and numerical simulations clearly indicate a reduction in strength, deformation and structural parameters for the temperature of 1200 °C.


Sign in / Sign up

Export Citation Format

Share Document