scholarly journals Security Improvements for Connected Vehicles Position-Based Routing

Author(s):  
Andrey Silva

The constant growing on the number of vehicles is increasing the complexity of traffic in urban and highway environments. It is paramount to improve traffic management to guarantee better road usage and people’s safety. Through efficient communications, Vehicular Ad hoc Networks (VANETs) can provide enough information for traffic safety initiatives, daily traffic data processing, and entertainment information. However, VANETs are vulnerable to malicious nodes applying different types of net-work attacks, where an attacker can, for instance, forge its position to receive the data packet and drop the message. This can lead vehicles and authorities to make incorrect assumptions and decisions, which can result in dangerous situations. Therefore, any data dissemination protocol designed for VANET should consider security issues when selecting the next-hop forwarding node. In this paper, we propose a security scheme designed for position-based routing algorithms, which analyzes nodes position, transmission range, and hello packet interval. The scheme deals with malicious nodes performing network attacks, faking their positions forcing packets to be dropped. We used the Simulation of Urban MObility (SUMO) and Network Simulator-version 3 (NS-3) to compare our proposed scheme integrated with two well-known position-based algorithms. The results were collected in an urban Manhattan grid environment varying the number of nodes, the number of malicious nodes, as well as the number of source-destination pairs. The results show that the proposed security scheme can successfully improve the packet delivery ratio while maintaining low average end-to-end delay of the algorithms. 

Author(s):  
José María De Fuentes ◽  
Ana Isabel González-Tablas ◽  
Arturo Ribagorda

Vehicular ad-hoc networks (VANETs) are a promising communication scenario. Several new applications are envisioned, which will improve traffic management and safety. Nevertheless, those applications have stringent security requirements, as they affect road traffic safety. Moreover, VANETs face several security threats. As VANETs present some unique features (e.g. high mobility of nodes, geographic extension, etc.) traditional security mechanisms are not always suitable. Because of that, a plethora of research contributions have been presented so far. This chapter aims to describe and analyze the most representative VANET security developments.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yousheng Zhou ◽  
Siling Liu ◽  
Min Xiao ◽  
Shaojiang Deng ◽  
Xiaojun Wang

The advent of intelligent transportation system has a crucial impact on the traffic safety and efficiency. To cope with security issues such as spoofing attack and forgery attack, many authentication schemes for vehicular ad hoc networks (VANETs) have been developed, which are based on the hypothesis that secret keys are kept perfectly secure. However, key exposure is inevitable on account of the openness of VANET environment. To address this problem, key insulation is introduced in our proposed scheme. With a helper device, vehicles could periodically update their own secret keys. In this way, the forward and backward secrecy has been achieved. In addition, the elliptic curve operations have been integrated to improve the performance. The random oracle model is adopted to prove the security of the proposed scheme, and the experiment has been conducted to demonstrate the comparison between our scheme and the existing similar schemes.


Author(s):  
Akeel Kassim Leaby ◽  
A. Yassin ◽  
Mushtaq Hasson ◽  
Abdullah Rashid

The wide use of vehicular ad hoc networks (VANETs) in the last decade hasled many researchers to find  efficient and reliable methods to obtain the desired benefits and offer services, such as healthcare and traffic management. However, VANETs suffer from security issues represented by authentication and data integrity. In thispaper, we propose a robust  mutual authentication scheme based on elliptic curve cryptography (ECC), cryptography hash function, and a pseudonym. The  proposed work was twofold in focus: first, on healthcare in emergency cars which use VANETs, and second, on overcoming security issues, such as resisting familiar attacks (e.g. insider attacks and reply attacks). Because of the serious situation generated by the worldwide outbreak of the Covid-19 epidemic, we also found this research valuable in supporting global efforts to combat the rapid spread of this virus, by finding the safest and fastest routes to epidemic treatment centres for medical staff, assistance teams in medical  operations, fumigation control, and all work teams associated with disease control. This research attempts to contribute by proposing a special signal  used to define epidemic teams. The best route, fast route can be chosen by using VANETs infrastructure. This scheme also deals with metric security features, such as key management, data integrity, and data privacy. In the communication and computation  cost, we  noticed  that our proposed scheme  achieved  good results compared with the related works.


Author(s):  
Akram A. Almohammedi ◽  
Nor K. Noordin ◽  
Sabri Saeed

Recently, interest in the field of Vehicular Ad-hoc Networks (VANETs) has grown among research community to improve traffic safety and efficiency on the roads. Despite the many advantages, the transmission range in vehicular network remains one of the major challenges due to the unique characteristics of VANETs such as various communication environments, highly dynamic topology, high node mobility and traffic density. The network would suffer from a broadcast-storm in high vehicular density when a fixed transmission range in VANET is used, while in sparse vehicular density the network could be disconnected frequently. In this paper, we evaluated the impact of different transmission ranges and number of flows formed between vehicles in a highway scenario using AODV as routing protocol. In order to validate the simulation of VANET, traffic and network simulators (SUMO & NS-2) have been used. The performance was evaluated in terms of packet delivery ratio and end-to-end delay. The simulation results have shown that better performance was achieved in term of higher PDR and lower end-to-end delay for less than 500 meters transmission range. On the contrary, the PDR started to decrease and end-to-end delay increased when the transmission range exceeded 500 meters. The performance degraded as the number of flows increased.


Author(s):  
Narayan Thakre ◽  
Sameeksha Verma ◽  
Amit Chouksey

Vehicular Ad Hoc Networks (VANETs) are self-organizing, self-healing networks that offer wireless communication among vehicles and roadside equipment. Providing safety and comfort for drivers and passengers is a promising goal of those networks. Designing an applicable routing protocol according to the network application is one among the essential necessities for implementing a victorious vehicular network. In this paper, we tend to report the results of a study on routing protocols associated with conveyance applications and their communication desires. The main aim of our study was to spot that routing technique has higher performance in extremely mobile environment of VANET. The thesis works is based on comparison between Ad hoc on demand Distance Vector routing protocol (AODV), Modified Ad hoc on demand distance vector routing (MAODV) and Destination sequenced distance vector routing (DSDV) in VANET on the basis of packet delivery ratio and end-to-end delay. The tool which we used for the work of performance is Network Simulator 2 (NS-2).


Author(s):  
Gurpreet Singh, Ganpat Joshi

The Mobile Adhoc Networks are more vulnerable because in the (MANET) Mobile Adhoc Network all node works as data sink, transmitter, router. There is no centralized system in the Mobile Adhoc network, so the chances of the vulnerabilities are very high in the network. There are various security issues in the Mobile Adhoc Network. From the various attacks the flooding attacks are most difficult attacks that extremely affect in Mobile Adhoc Network. In this paper, a new statistical based technique is planned, which is used to discover the flooding attack in an positive approach than other approaches. In the planned of Statistical Ad-Hoc on Demand Distance Vector (SAODV) approach is used to detect malicious nodes in the Mobile Adhoc Network. In this technique, statistical threshold value is obtained from mean and variance. In this approach the value is utilize to locate the (RREQ) Route Request flooding attacker nodes in the Mobile Adhoc Network. The proposed method is capable because threshold values are calculated on the source of RREQs prepared by every node in the Mobile Addhoc Network. The simulation results clearly depict that the proposed approach has significant performance in the terms of throughput, delay, packet delivery ratio, and overhead.


Author(s):  
Nirbhay Kumar Chaubey ◽  
Dhananjay Yadav

<span>Vehicular ad hoc network (VANET) is an emerging technology which can be very helpful for providing safety and security as well as for intelligent transportation services. But due to wireless communication of vehicles and high mobility it has certain security issues which cost the safety and security of people on the road. One of the major security concerns is the Sybil attack in which the attacker creates dummy identities to gain high influence in the network that causes delay in some services and fake voting in the network to misguide others. The early detection of this attack can prevent people from being misguided by the attacker and save them from getting into any kind of trap. In this research paper, Sybil attack is detected by first applying the Poisson distribution algorithm to predict the traffic on the road and in the second approach, analysis of the network performance for packet delivery ratio (PDR) is performed in malign and benign environment. The simulation result shows that PDR decreases in presence of fake vehicles in the network. Our approach is simple and effective as it does not require high computational overhead and also does not violate the privacy issues of people in the network.</span>


Author(s):  
Mohamed Hadded ◽  
Khalifa Toumi ◽  
Anis Laouiti ◽  
Paul Muhlethaler

Vehicular ad hoc networks, known as VANETs, are deployed to improve passenger comfort as well as to reduce the risk of road accidents by allowing vehicles to provide a warning in real time when a critical event is detected. In such networks, communication is possible both between the vehicles themselves and between the vehicles and the infrastructure. These applications need a reliable and secure broadcast system that takes into consideration the security issues in VANETs, the high speed of nodes, and the strict QoS requirements. For these reasons, the authors propose a trust-based and centralized TDMA-based MAC protocol that avoids time slot assignment to malicious nodes and minimizes message collision. The solution is based on the design of a generic trust mechanism for VANETs based on the MAC requirements and its integration into a centralized TDMA-based MAC protocol, named trust-CTMAC. The mechanism will permit roadside units (RSUs) to manage trust level assignment via security check during free slot allotment. The experiments carried out and the results obtained prove the effectiveness of the approach.


Information ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 263 ◽  
Author(s):  
Yuhong Li ◽  
Xinyue Shi ◽  
Anders Lindgren ◽  
Zhuo Hu ◽  
Peng Zhang ◽  
...  

Information-centric networking (ICN) technology matches many major requirements of vehicular ad hoc networks (VANETs) in terms of its connectionless networking paradigm accordant with the dynamic environments of VANETs and is increasingly being applied to VANETs. However, wireless transmissions of packets in VANETs using ICN mechanisms can lead to broadcast storms and channel contention, severely affecting the performance of data dissemination. At the same time, frequent changes of topology due to driving at high speeds and environmental obstacles can also lead to link interruptions when too few vehicles are involved in data forwarding. Hence, balancing the number of forwarding vehicular nodes and the number of copies of packets that are forwarded is essential for improving the performance of data dissemination in information-centric networking for vehicular ad-hoc networks. In this paper, we propose a context-aware packet-forwarding mechanism for ICN-based VANETs. The relative geographical position of vehicles, the density and relative distribution of vehicles, and the priority of content are considered during the packet forwarding. Simulation results show that the proposed mechanism can improve the performance of data dissemination in ICN-based VANET in terms of a successful data delivery ratio, packet loss rate, bandwidth usage, data response time, and traversed hops.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Bin Hu ◽  
Hamid Gharavi

A joint vehicle-vehicle/vehicle-roadside communication protocol is proposed for cooperative collision avoiding in Vehicular Ad Hoc Networks (VANETs). In this protocol, emergency warning messages are simultaneously transmitted via Vehicle-to-Vehicle (V2V) and Vehicle-to-Roadside (V2R) communications in order to achieve multipath diversity routing. In addition, to further improve communication reliability and achieve low latency, a Multi-Channel (MC) technique based on two nonoverlapping channels for Vehicle-Vehicle (V2V) and V2R (or R2V) is proposed. The simulation results demonstrate that the proposed joint V2V/V2R (R2V) communication protocol is capable of improving the message delivery ratio and obtaining low latency, which are very important merits for highway traffic safety.


Sign in / Sign up

Export Citation Format

Share Document