Strong topological invariance of the monodromy group at infinity for quadratic vector fields

Author(s):  
Valente Ramírez
Author(s):  
René Zander

AbstractWe discuss the singularity structure of Kahan discretizations of a class of quadratic vector fields and provide a classification of the parameter values such that the corresponding Kahan map is integrable, in particular, admits an invariant pencil of elliptic curves.


2005 ◽  
Vol 6 (2) ◽  
pp. 187-204 ◽  
Author(s):  
Paulo César Carrião ◽  
Maria Elasir Seabra Gomes ◽  
Antonio Augusto Gaspar Ruas

2018 ◽  
Vol 28 (11) ◽  
pp. 1850139 ◽  
Author(s):  
Laigang Guo ◽  
Pei Yu ◽  
Yufu Chen

This paper is concerned with the number of limit cycles bifurcating in three-dimensional quadratic vector fields with [Formula: see text] symmetry. The system under consideration has three fine focus points which are symmetric about the [Formula: see text]-axis. Center manifold theory and normal form theory are applied to prove the existence of 12 limit cycles with [Formula: see text]–[Formula: see text]–[Formula: see text] distribution in the neighborhood of three singular points. This is a new lower bound on the number of limit cycles in three-dimensional quadratic systems.


2007 ◽  
Vol 17 (2) ◽  
pp. 259-270 ◽  
Author(s):  
J. C. Artés ◽  
◽  
Jaume Llibre ◽  
J. C. Medrado ◽  
◽  
...  

2008 ◽  
Vol 7 (2) ◽  
pp. 417-433 ◽  
Author(s):  
Paulo César Carrião ◽  
Maria Elasir Seabra Gomes ◽  
Antonio Augusto Gaspar Ruas

Sign in / Sign up

Export Citation Format

Share Document