scholarly journals A study of wind chill effect at Maitri, Antarctica

MAUSAM ◽  
2022 ◽  
Vol 46 (1) ◽  
pp. 31-34
Author(s):  
E. KULANDAIVELU ◽  
SARBJIT SINGH

The influence of meteorological parameters like wind and temperature determine the chillness upon the human body. The rate of heat removal from the human body by wind and low temperature was termed as Wind Chill by Siple and Passel (1945). Using the wind chill chart wind chill effects at Maitri, Antarctica during 1990 have been studied and compared with conventional value of monthly mean dry bulb and minimum temperatures. It has been observed that the wind chili temperature was about 15°-25°C lower than the dry bulb temperature when the wind speed exceeds 10 kt.      

1948 ◽  
Vol 29 (10) ◽  
pp. 487-493 ◽  
Author(s):  
Arnold Court

The rate of heat removal from the human body by wind and low temperature was termed Wind Chill by Siple and expressed by an empirical formula. This paper discusses the formula critically, pointing out that this measure of the convective heat loss may be less than three-quarters of the total heat lost by the body. Siple's formula is compared with those of others, and the use of the formula is discussed.


Author(s):  
Nastaran Talepour ◽  
Mohammad Sadegh Hassanvand ◽  
Effat Abbasi-Montazeri ◽  
Seyed Mahmoud Latifi ◽  
Neamat Jaafarzadeh Haghighi Fard

Introduction: Airborne Cladosporium spores in different regions of the world are known as the main cause of allergic diseases. This study aimed to identify the Cladosporium species airborne fungi in Ahvaz wastewater treat- ment plant area and its adjacent places and check the effect of some meteoro- logical parameters on their emissions. Materials and methods: Cladosporium spores were cultured on Sabouraud`s dextrose agar (SDA) medium in both cold and warm seasons. The passive sampling method was performed and after incubation, colonies were counted as CFU/Plate/h. Then, according to the macroscopic and microscopic charac- teristics of the genus, the fungal was studied. The meteorological parameters including temperature, humidity, air pressure, dew point, wind speed, and ultraviolet index were measured. Results: At least, 3358 colonies were counted. 1433 colonies were related  to the Cladosporium species. The amount of Cladosporium in indoor air was 46% of the total Cladosporium. The average of meteorological parameters includes temperature, humidity, air pressure, dew point, wind speed and UV index during the study were 27.8 °C, 32.9%, 548.7 °Kpa, 3.6°, 9.1 km / h and 3.9 respectively. 42.6% of the total number of colonies was related to the Cladosporium species. Cladospiromes had a direct correlation with the dew point, temperature, humidity, air pressure, wind speed, and ultraviolet index (Pvalue<0.05). Primary sludge dewatering has the greatest role in the Cladospo- rium spores emission. Conclusion: Considering the importance of Cladosporium spores in the ap- pearance of allergic diseases, and given that wastewater treatment workers spend most of their time outside, observing health and preventive measures is necessary in this regard.


Author(s):  
Radoslav Kojić ◽  
Matija Antić

Meteorological parameters and traffic flows have a direct impact on air quality in large urban areas, and hence on the quality of life in them. A large number of done surveys confirmed the great dependence of the concentration of ground-level ozone (O3) upon meteorological parameters and the size, structure and imbalances of traffic flows. As part of the research conducted in the period from November 5th to December 8th 2014 in Brcko in Muderis Ibrahimbegic St concentrations of ground-level ozone (O3) were measured, meteorological parameters (temperature, humidity, wind speed and intensity of solar radiation) and characteristics of traffic flow of road motor vehicles. The maximum concentrations of ground-level ozone (O3) in the measurement period was 106.54μg/m³, while the minimum concentration was 4.794μg/m³. By analyzing the results of measurements the high coefficient of correlation between wind speed, air temperature and humidity was established. The correlation coefficient between the traffic flows on the one hand and the concentration of ground-level ozone (O3), on the other hand is very low and does not exceed the value of 0.301. A negative correlation coefficient between traffic flows and concentrations of ground-level ozone (O3) is also observed in the certain time of the day.


2010 ◽  
Vol 28 (6) ◽  
pp. 1199-1205 ◽  
Author(s):  
S. K. Sharma ◽  
T. K. Mandal ◽  
B. C. Arya ◽  
M. Saxena ◽  
D. K. Shukla ◽  
...  

Abstract. In this paper, we present the effect of total solar eclipse on surface O3, NO, NO2, NH3, CO mixing ratio and the meteorological parameters on 15 January 2010 at Thiruvanathapuram, India. On the day of total solar eclipse (i.e., 15 January 2010), the decrease in mixing ratio of surface O3 and NO2 is observed after the beginning of the solar eclipse events (11:15 to 15:30). Decrease in surface O3 may be due to decreased efficiency of the photochemical ozone formation, whereas, mixing ratio of NO and NH3 have been changed following the night time chemistry. Surface O3 reduced to 20.3 ppb after 22 min of full phase of the eclipse. During the solar eclipse period, the ambient temperature and wind speed have decreased, whereas, relative humidity has increased as expected.


Author(s):  
Junxiu Xu ◽  
Ming Ding ◽  
Changqi Yan ◽  
Guangming Fan

Abstract The Passive Residual Heat Removal System (PRHRS) is very important for the safety of the heating reactor after shutdown. PRHRS is a natural circulation system driven by density difference, therefore, the heat transfer performance of the Passive Residual Heat Removal Heat Exchanger (PRHR HX) has a great impact to the heat transfer efficiency of PRHRS. However, the most research object of PRHR HX is the C-shape heat exchanger at present, which located in In-containment Refueling Water Storage Tank (IRWST). This heat exchanger is mainly used for the PRHRS of nuclear power plants. In the swimming pool-type low-temperature heating reactor (SPLTHR), the PRHR HX is placed in the reactor pool, which the pressure and temperature of the reactor pool are relatively low, and the outside heat transfer mode of tube bundle is mainly natural convection heat transfer. In this study, a miniaturized single-phase pool water cooling system was built to investigate the natural convective heat transfer coefficient of the heat exchanger under the large space and low temperature conditions. The experimental data had been compared with several correlations. The results show that the predicted value of Yang correlation is the closest to the experimental data, which the maximum deviation is about 11%.


Author(s):  
S.I. Pyasetska ◽  
N.P. Grebenyuk ◽  
S.V. Savchuk

The article presents the results of the study of the determination of the correlation connection between a number of meteorological values at the beginning of the deposition of ice on the wires of a standard ice-cream machine in certain months of the cold period of the year on the territory of Ukraine during 2001-2013. The research was conducted for 3 winter months, as well as for March and November. The pair of meteorological parameters have been determined at the beginning of the deposition of ice that have a statistically significant correlation coefficient and a spatial-temporal distribution of the distribution in certain months across the territory of Ukraine has been obtained. The most common variant of the statistically significant connection between individual meteorological parameters was the connection between the temperature of the water column (average, maximum, minimum) and relative humidity of air (average, maximum). Thus, for almost all months studied, a statistically significant correlation between the temperature of the vapor (average, maximum, minimum) and relative humidity of air (average, maximum) was established. For the winter months, the correlation coefficient of this connection was positive, and for March and November, it was negative. A widespread version of a statistically significant connection was the relationship between the air temperature (average, maximum, minimum) and the height of the snow cover. This connection for the months studied turned out to be negative. The variants of negative statistically significant connection between average wind speed and average relative humidity of air (January-February, December), average and maximum wind speed and sea-level pressure (November), and also between daily amount precipitation and snow (March), daily rainfall and wind speed (average, maximum), and pressure at sea level (November). During the months of the cold period of the year, statistically significant connections between the air temperature (average, maximum) and pressure at sea level (November), wind speed (average, maximum) and average humidity (January, December), pressure on sea levels and average relative humidity (March). Also, there were isolated cases of statistically significant correlation between snow and sea level pressure (December). The most frequently statistically significant connections between meteorological values at the dates of deposition of ice on the wires of a standard icing machine were observed at stations in the central, northeastern, eastern and separate southern regions.


Author(s):  
Глемба ◽  
K. Glemba ◽  
Гриценко ◽  
A. Gritsenko ◽  
Аверьянов ◽  
...  

Identifies the main factors influencing the process of formation of the thermal state of the human body. Calculated structural parameters of thermally regulating the local device. Experimental relationships between indicators of the thermal state of the human operator and the device settings. A method of calculating the power, the dependence of the heat flux conductive panels and deficit (excess) heat in the human body. Justified and selected method of controlling the heat removal from the surface of the body of the human operator using a local thermally regulating device. We present graphical dependence of changes in the average power density of the heat flow for a given rate of decline of temperature and of total body weight; changes in power density of the heat flow and human growth. To obtain comfortable temperatures the body requires an average power density of the heat flow from the surface of the human body 268 W/m2, full capacity of the heat flow will amount to 486 watts.


1976 ◽  
Vol 54 (8) ◽  
pp. 1307-1313 ◽  
Author(s):  
Emil Kucera

Summary of food and habitat preferences of Delta Marsh deer is presented. Wind-chill and snow-cover data were compared for three successive winters and related to the next year's fawning success. Snow cover that limited access to the herbaceous food, rather than wind and low temperature, apparently was responsible for the annual differences in observed fawn:doe ratios. Deer adapted their activity to both weather and snow-cover conditions. Use of different vegetation types was inversely related to snow-cover thickness. It is suggested that acute malnutrition, or inanition, without range depletion may be a common mechanism of regulating populations of ungulates that live near the limits of the species' distribution in areas with severe winters.


2011 ◽  
Vol 11 ◽  
pp. 992-1004 ◽  
Author(s):  
Byungwhan Kim ◽  
Joogong Lee ◽  
Jungyoung Jang ◽  
Dongil Han ◽  
Ki-Hyun Kim

Models to predict seasonal hydrogen sulfide (H2S) concentrations were constructed using neural networks. To this end, two types of generalized regression neural networks and radial basis function networks are considered and optimized. The input data for H2S were collected from August 2005 to Fall 2006 from a huge industrial complex located in Ansan City, Korea. Three types of seasonal groupings were prepared and one optimized model is built for each dataset. These optimized models were then used for the analysis of the sensitivity and main effect of the parameters. H2S was noted to be very sensitive to rainfall during the spring and summer. In the autumn, its sensitivity showed a strong dependency on wind speed and pressure. Pressure was identified as the most influential parameter during the spring and summer. In the autumn, relative humidity overwhelmingly affected H2S. It was noted that H2S maintained an inverse relationship with a number of parameters (e.g., radiation, wind speed, or dew-point temperature). In contrast, it exhibited a declining trend with a decrease in pressure. An increase in radiation was likely to decrease during spring and summer, but the opposite trend was predicted for the autumn. The overall results of this study thus suggest that the behavior of H2S can be accounted for by a diverse combination of meteorological parameters across seasons.


2004 ◽  
Vol 85 (5) ◽  
pp. 717-724 ◽  
Author(s):  
Peter Tikuisis

This paper presents a method for predicting the onset of finger freezing. It is an extension of a tissue-cooling model originally developed to predict the onset of cheek freezing. The extension to the finger is presented as a more conservative warning of wind chill. Indeed, guidance on the risk of finger freezing is important not only to safeguard the finger, but also because it pertains more closely to susceptible facial features, such as the nose, than if only the risk of cheek freezing was provided. The importance of blood flow to the finger and the modeling of vasoconstriction are demonstrated through cooling predictions that agree reasonably well with several reported observations. Differences in the prediction between the present physiologic-based model and the engineering model used to develop the wind chill index are also discussed. New wind chill charts are presented that tabulate the mean cooling rates and corresponding onset times to freezing of the finger for various combinations of air temperature and wind speed. Results indicate that the surface of the finger cools to its freezing point in approximately one-eighth of the time predicted for the cheek. For combinations that result in the same wind chill temperature (WCT), the rate of finger cooling is faster at the higher wind speed. This asymmetry was previously disclosed through the application of the model to cheek cooling, and it reiterates the ambiguity associated with the reporting of WCT. It is further emphasized that the reporting of onset times to freezing, or safe exposure limits, is a more logical and meaningful alternative to the WCT.


Sign in / Sign up

Export Citation Format

Share Document