scholarly journals MM5 simulation of the 1999 Orissa Super Cyclone : Impact of bogus vortex on track and intensity prediction

MAUSAM ◽  
2021 ◽  
Vol 57 (1) ◽  
pp. 129-134
Author(s):  
R. G. ASHRIT ◽  
M. DAS GUPTA ◽  
A. K. BOHRA

lkj & bl v/;;u esa 29 vDrwcj] 1999 dks mM+hlk ds rV ij vk, egkpØokr ds izfr:i.k ds fy, ,u- lh- ,- vkj@ih- ,l- ;w-  ,e- ,e- 5 eslksLdsy fun’kZ ¼xzsy bR;kfn 1995½ dk mi;ksx fd;k x;k gsA bl fun’kZ esa pØokr dh izkjafHkd voLFkk vkSj mldh ifjlhekvksa dh voLFkkvksa ds :i  esa jk"Vªh; e/;&vof/k ekSle iwokZuqeku dsUnz Vh- 80 ds izpkyukRed fo’ys"k.kksa dk iz;ksx fd;k x;k gS vkSj rwQku dh vof/k esa 3 fnu rd dk iwokZuqeku rS;kj djus ds fy, bl fun’kZ dks 72 ?kaVs dh vof/k ds fy, lekdfyr fd;k x;k gSA bl v/;;u dk mn~ns’; pØokr ds ekxZ ij dfYir Hkzfey ds izHkko dk ewY;kadu djuk vkSj pØokr dh rhozrk dk iwokZuqeku yxkuk gSA In this study NCAR/PSU MM5 mesoscale model (Grell et al. 1995) is used to simulate the super cyclone that struck the Orissa coast on 29th October 1999. The model makes use of the operational NCMRWF T 80 analysis as initial and boundary conditions and is integrated up to 72 hr for producing 3-day forecast of the storm. The aim of this study is to assess the impact of bogus vortex on track and intensity prediction. 

2017 ◽  
Vol 30 (15) ◽  
pp. 6017-6036 ◽  
Author(s):  
Sachie Kanada ◽  
Tetsuya Takemi ◽  
Masaya Kato ◽  
Shota Yamasaki ◽  
Hironori Fudeyasu ◽  
...  

Intense tropical cyclones (TCs) sometimes cause huge disasters, so it is imperative to explore the impacts of climate change on such TCs. Therefore, the authors conducted numerical simulations of the most destructive historical TC in Japanese history, Typhoon Vera (1959), in the current climate and a global warming climate. The authors used four nonhydrostatic models with a horizontal resolution of 5 km: the cloud-resolving storm simulator, the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, the Japan Meteorological Agency (JMA) operational nonhydrostatic mesoscale model, and the Weather Research and Forecasting Model. Initial and boundary conditions for the control simulation were provided by the Japanese 55-year Reanalysis dataset. Changes between the periods of 1979–2003 and 2075–99 were estimated from climate runs of a 20-km-mesh atmospheric general circulation model, and these changes were added to the initial and boundary conditions of the control simulation to produce the future climate conditions. Although the representation of inner-core structures varies largely between the models, all models project an increase in the maximum intensity of future typhoons. It is found that structural changes only appeared around the storm center with sudden changes in precipitation and near-surface wind speeds as the radius of maximum wind speed (RMW) contracted. In the future climate, the water vapor mixing ratio in the lower troposphere increased by 3–4 g kg−1. The increased water vapor allowed the eyewall updrafts to form continuously inside the RMW and contributed to rapid condensation in the taller and more intense updrafts.


2020 ◽  
Vol 1 (154) ◽  
pp. 293-297
Author(s):  
V. Strelets ◽  
R. Shevchenko

The urgent problem of formation of initial and boundary conditions of mathematical model of emergency localization with the help of a two-level dome-shaped protective device in case of forced thermal destruction of the device of impulse damage of chemical-dangerous substances is solved in the work. The solution to this problem was based on the hypothesis of the possibility of rapid application of a two-level protective device for the thermal localization of a cell of emergencies related to the impulse lesion of chemically dangerous substances. According to the hypothesis, approaches to the formation of a mathematical apparatus, which consists of a mathematical model of prevention of an emergency of a similar nature, the control algorithm and methods for their practical application, are determined. In order to implement this approach, the paper analyzes the current state of formation of the mathematical apparatus, identifies the existing shortcomings of the existing models. In order to eliminate the latter, the impact of characteristic technical and operational conditions on the effectiveness of localization of emergency situation related to the threat of impulse emission of chemical hazardous substances was analyzed. In the course of the research it was proved that the formation of recommendations for reducing the time of localization of the consequences of emergencies related to the threat of impulse release of chemical-dangerous substances by means of a two-level protective device requires obtaining a multifactor mathematical model of emergency prevention taking into account its initial and boundary conditions. The final step was to determine the initial and boundary conditions of a multifactor mathematical model that describes the behavior of the emergency prevention process. Based on this, further research should be aimed at developing a mathematical model of emergency prevention related to the threat of impulse release of chemical-dangerous substances and appropriate methodology based on it, which will reduce the time of localization of the consequences of an emergency without changing the level of safety of civilians and personal the composition of the emergency rescue unit with the help of a mobile protective device. Keywords: thermal destruction, emergency, chemical hazardous substances, protective device


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 592
Author(s):  
Francesco Ferrari ◽  
Federico Cassola ◽  
Peter Enos Tuju ◽  
Alessandro Stocchino ◽  
Paolo Brotto ◽  
...  

In late summer and autumn Mediterranean coastal regions are quite regularly affected by small-scale, flood-producing convective systems. The complexity of mesoscale triggering mechanisms, related to low-level temperature gradients, moisture convergence, and topographic effects contributes to limit the predictability of such phenomena. In the present work, a severe convection episode associated to a flash flood occurred in Cannes (southern France) in October 2015, is investigated by means of numerical simulations with a state-of-the-art nonhydrostatic mesoscale model. In the modelling configuration operational at the University of Genoa precipitation maxima were underestimated and misplaced. The impact of model resolution as well as initial and boundary conditions on the quantitative precipitation forecasts is analyzed and discussed. In particular, the effect of ingesting a high-resolution satellite-derived sea surface temperature field is proven to be beneficial in terms of precipitation intensity and localization, especially when also associated with the most accurate lateral boundary conditions.


2008 ◽  
Vol 2 (1) ◽  
pp. 113-118 ◽  
Author(s):  
N. Castell ◽  
A. F. Stein ◽  
R. Salvador ◽  
E. Mantilla ◽  
M. Millán

Abstract. A three-dimensional air quality model based on a set of chemical species mass conservation equations describes the time evolution of chemical species in the atmosphere. In order to solve this set of equations, proper choices of initial and boundary conditions are needed. Ideally, initial and boundary conditions should be determined on the basis of observations. However, since such high-resolution observations are generally not available, it becomes necessary to use other information sources to specify the initial and boundary values. The fact that both the initial and the boundary conditions are specified with some degree of presumption makes it important to evaluate their influence in the model results. In this paper we present a study of the impact of initial and boundary concentrations on the modelled surface ozone concentration over two environments: Huelva and Badajoz, an industrial and a rural zone, respectively. The impacts are analysed for the same meteorological period (10–15 August 2003).


MAUSAM ◽  
2021 ◽  
Vol 57 (1) ◽  
pp. 79-96
Author(s):  
M. MANDAL ◽  
U. C. MOHANTY

& 29 vDrwcj] 1999 dks mM+hlk ds rV ij vk;k egkpØokr mM+hlk ds vc rd ds bfrgkl dk lcls izpaM rwQku Fkk ftldh 250 fd-eh- izfr ?kaVk dh rhoz xfr okyh iouksa us jkT; ds 12 rVh; ftyksa dks rgl&ugl dj MkykA rwQku ds LFky ls Vdjkus ds i'pkr~ 36 ?kaVs ls Hkh vf/kd le; rd iouksa dh izpaMrk cuh jghA bl rwQku ls tku eky dk dkQh uqdlku gqvkA yxHkx 10]000 yksxksa dh tkusa xbZA bl v/;;u esa rwQku ds eslksLdsy izfr:Ik dks csgrj cukus ds fy, dqN egRoiw.kZ igyqvksa dh tk¡p gsrq O;kid la[;kRed iz;ksx fd, x, gSaA bu igyqvksa esa xSj nzoLFkSfrd xfrd] fun’kZ {kSfrt foHksnu vkSj egRoiw.kZ izR;{k izfØ;kvksa ds izkpyhdj.k 'kkfey gSaA rwQku dk 5 fnolh; izfr:Ik ¼123 ?kaVksa ds yxkrkj lekdyu½ rS;kj djus ds fy, eslksLdsy fun’kZ ,e- ,e- 5 dk mi;ksx fd;k x;k gSA blesa le:ih foHksnu ¼30 fd-eh-½ vkSj le:ih le; J`a[kyk ds lkFk nzoLFkSfrd ¼,p-,l-½ rFkk xSj nzoLFkSfrd ¼,u- ,l-½ xfrdksa ds lg;ksx ls rwQku ds izfr:i  esa xSj nzoLFkSfrdrk ds izHkko dh tk¡p dh xbZ gSA bl fof/k ls rwQku vkSj fo’ks"k :Ik ls bldh rhozrk dk xSj nzoLFkSfrd xfrdksa ds lkFk lgh izfr:i.k gksrk gSA xSj nzoLFkSfrd xfrdksa ds lkFk 90 fd-eh-] 60 fd-eh- vkSj 30 fd-eh- ds foHksnuksa ij rwQku dk izfr:i.k  djrs gq, fun’kZ dh laof/kZr {kSfrt foHksnu dh egRrk dh tk¡p dh xbZ gS vkSj rwQku ds izfr:i.k esa bldk izR;{k izHkko ns[kk x;k gSA egRoiw.kZ izR;{k izfØ;k okys diklh laogu xzgh; ifjlhek Lrj ¼ih- ch- ,y-½ vkSj fofdj.k gsrq fun’kZ esa miyC/k izkpyhÑr ;kstukvksa ds csgrj lEHkkO; leUo; dk irk yxkus ds fy, la[;kRed iz;ksx Hkh fd, x,A lh- lh- ,e- 2 fofdj.k izkpyhÑr ;kstuk lesr xzsy diklh laogu vkSj gk¡x&isu ih- ch- ,y- ;kstuk ds lkFk leUo;u okyh ;kstuk ds vU; ijhf{kr ;kstukvksa dh rqyuk esa lcls csgrj ifj.kkeksa dk irk pyk gSA The super cyclone that crossed Orissa coast on 29 October 1999 was the most intense storm in the history of Orissa with 12 coastal districts of the state were battered by winds reaching 250 kmph. The fury of winds continued for more than 36 hours after landfall of the storm. The storm caused huge damage to properties and nearly        10,000 people lost their lives. In the present study, extensive numerical experiments are conducted to investigate some important aspects that may lead to the improvement in mesoscale simulation of the storm. The aspects that are addressed here include non-hydrostatic dynamics, model horizontal resolution and parameterization of important physical processes. The mesoscale model MM5 is used to produce 5-day simulation of the storm. The influence of non-hydrostaticity is investigated by simulating the storm with hydrostatic (HS) and non-hydrostatic (NS) dynamics at same resolution (30 km) and with same time step. The storm, in particular its intensity is better simulated with non-hydrostatic dynamics. The importance of increasing model horizontal resolution is investigated by simulating the storm at 90 km, 60 km and 30 km resolutions with non-hydrostatic dynamics and found to have perceptible impact in simulation of the storm. Numerical experiments also are conducted to find the best possible combination of the parameterization schemes available in the model for the important physical processes cumulus convection, planetary boundary layer (PBL) and radiation. The combination of Grell cumulus convection and Hong-Pan PBL scheme along with CCM2 radiation parameterization scheme is found to provide the best result compared to the other schemes tested.


1971 ◽  
Vol 2 (3) ◽  
pp. 146-166 ◽  
Author(s):  
DAVID A. WOOLHISER

Physically-based, deterministic models, are considered in this paper. Physically-based, in that the models have a theoretical structure based primarily on the laws of conservation of mass, energy, or momentum; deterministic in the sense that when initial and boundary conditions and inputs are specified, the output is known with certainty. This type of model attempts to describe the structure of a particular hydrologic process and is therefore helpful in predicting what will happen when some change occurs in the system.


Sign in / Sign up

Export Citation Format

Share Document