scholarly journals Development of 1961-1990 monthly surface climatology of India and patterns of differences of some meteorological parameters with respect to the 1951-1980 climatology

MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 377-390
Author(s):  
A.K. JASWAL ◽  
S.R. BHAMBAK ◽  
M.K. GUJAR ◽  
S.H. MOHITE ◽  
S. ANANTHARAMAN ◽  
...  

Climate normals are used to describe the average climatic conditions of a particular place and are computed by National Meteorological Services of all countries. The World Meteorological Organization (WMO) recommends that all countries prepare climate normals for the 30-year periods ending in 1930, 1960, 1990 and so on, for which the WMO World Climate Normals are published. Recently, Climatological Normals for the period 1961-1990 have been prepared by India Meteorological Department (IMD) which will change the baseline of comparison from 1951-1980. In this paper, preparation of the 30-year Climatological Normals of India for the period 1961 to 1990 and spatial patterns of differences of annual means of temperatures, relative humidity, clouds, rainfall and wind speed from the previous normals (1951-1980) are documented.The changes from earlier climatological normals indicate increase in annual means of maximum temperature, relative humidity and decrease in annual means of minimum temperature, cloud amount, rainfall, rainy days and wind speed over large parts of the country during 1961-1990. The spatial patterns of changes in dry bulb temperatures and relative humidity are complementary over most parts of the country. Compared with 1951-1980 climatology, there are large scale decreases in annual mean rainfall, rainy days and wind speed over most parts of the country during 1961-1990. The decrease in wind speed may be partly due to changes in exposure conditions of observatories due to urbanization.

2015 ◽  
Vol 33 (3) ◽  
pp. 477 ◽  
Author(s):  
Nadja Gomes Machado ◽  
Marcelo Sacardi Biudes ◽  
Carlos Alexandre Santos Querino ◽  
Victor Hugo De Morais Danelichen ◽  
Maísa Caldas Souza Velasque

ABSTRACT. Cuiab´a is located on the border of the Pantanal and Cerrado, in Mato Grosso State, which is recognized as one of the biggest agricultural producers of Brazil. The use of natural resources in a sustainable manner requires knowledge of the regional meteorological variables. Thus, the objective of this study was to characterize the seasonal and interannual pattern of meteorological variables in Cuiab´a. The meteorological data from 1961 to 2011 were provided by the Instituto Nacional de Meteorologia (INMET – National Institute of Meteorology). The results have shown interannual and seasonal variations of precipitation, solar radiation, air temperature and relative humidity, and wind speed and direction, establishing two main distinct seasons (rainy and dry). On average, 89% of the rainfall occurred in the wet season. The annual average values of daily global radiation, mean, minimum and maximum temperature and relative humidity were 15.6 MJ m–2 y–1, 27.9◦C, 23.0◦C, 30.0◦C and 71.6%, respectively. Themaximum temperature and the wind speed had no seasonal pattern. The wind speed average decreased in the NWdirectionand increased in the S direction.Keywords: meteorological variables, climatology, ENSO. RESUMO. Cuiabá está localizado na fronteira do Pantanal com o Cerrado, no Mato Grosso, que é reconhecido como um dos maiores produtores agrícolas do Brasil. A utilização dos recursos naturais de forma sustentável requer o conhecimento das variáveis meteorológicas em escala regional. Assim, o objetivo deste estudo foi caracterizar o padrão sazonal e interanual das variáveis meteorológicas em Cuiabá. Os dados meteorológicos de 1961 a 2011 foram fornecidos pelo Instituto Nacional de Meteorologia (INMET). Os resultados mostraram variações interanuais e sazonais de precipitação, radiação solar, temperatura e umidade relativa do ar e velocidade e direção do vento, estabelecendo duas principais estações distintas (chuvosa e seca). Em média, 89% da precipitação ocorreu na estação chuvosa. Os valores médios anuais de radiação diária global, temperatura do ar média, mínima e máxima e umidade relativa do ar foram 15,6 MJ m–2 y–1, 27,9◦C, 23,0◦C, 30,0◦C e 71,6%, respectivamente. A temperatura máxima e a velocidade do vento não tiveram padrão sazonal. A velocidade média do vento diminuiu na direção NW e aumentou na direção S.Palavras-chave: variáveis meteorológicas, climatologia, ENOS.


2020 ◽  
Author(s):  
Congying Han

<p><strong>Spatiotemporal Variability of Potential Evaporation in Heihe River Basin Influenced by Irrigation </strong></p><p>Congying Han<sup>1,2</sup>, Baozhong Zhang<sup>1,2</sup>, Songjun Han<sup>1,2</sup></p><p><sup>1</sup> State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.</p><p><sup>2</sup> National Center of Efficient Irrigation Engineering and Technology Research-Beijing, Beijing 100048, China.</p><p>Corresponding author: Baozhong Zhang ([email protected])</p><p><strong>Abstract: </strong>Potential evaporation is a key factor in crop water requirement estimation and agricultural water resource planning. The spatial pattern and temporal changes of potential evaporation calculated by Penman equation (E<sub>Pen</sub>) (1970-2017) in Heihe River Basin (HRB), Northwest China were evaluated by using data from 10 meteorological stations, with a serious consideration of the influences of irrigation development. Results indicated that the spatial pattern of annual E<sub>Pen</sub> in HRB was significantly different, among which the E<sub>Pen</sub> of agricultural sites (average between 1154 mm and 1333 mm) was significantly higher than that of natural sites (average between 794 mm and 899 mm). Besides, the coefficient of spatial variation of the aerodynamic term (E<sub>aero</sub>) was 0.4, while that of the radiation term (E<sub>rad</sub>) was 0.09. The agricultural irrigation water withdrawal increased annually before 2000, but decreased significantly after 2000 which was influenced by the agricultural development and the water policy. Coincidentally, the annual variation of E<sub>pen</sub> in agricultural sites decreased at -40 mm/decade in 1970-2000 but increased at 60 mm/decade in 2001-2017, while that in natural sites with little influence of irrigation, only decreased at -0.5mm/decade in 1970-2000 but increased at 11 mm/decade in 2001-2017. So it was obvious that irrigation influenced E<sub>pen </sub>significantly and the change of E<sub>pen</sub> was mainly caused by the aerodynamic term. The analysis of the main meteorological factors that affect E<sub>pen</sub> showed that wind speed had the greatest impact on E<sub>pen</sub> of agricultural sites, followed by relative humidity and average temperature, while the meteorological factors that had the greatest impact on E<sub>pen</sub> of natural sites were maximum temperature, followed by wind speed and relative humidity.</p>


2020 ◽  
Author(s):  
Maria Francisca Cardell ◽  
Arnau Amengual ◽  
Romualdo Romero

<p>Europe and particularly, the Mediterranean countries, are among the most visited tourist destinations worldwide, while it is also recognized as one of the most sensitive regions to climate change. Climate is a key resource and even a limiting factor for many types of tourism. Owing to climate change, modified patterns of atmospheric variables such as temperature, rainfall, relative humidity, hours of sunshine and wind speed will likely affect the suitability of the European destinations for certain outdoor leisure activities.</p><p>Perspectives on the future of second-generation climate indices for tourism (CIT) that depend on thermal, aesthetic and physical facets are derived using model projected daily atmospheric data and present climate “observations”. Specifically, daily series of 2-m maximum temperature, accumulated precipitation, 2-m relative humidity, mean cloud cover and 10-m wind speed from ERA-5 reanalysis are used to derive the present climate potential. For projections, the same daily variables have been obtained from a set of regional climate models (RCMs) included in the European CORDEX project, considering the rcp8.5 future emissions scenario. The adoption of a multi-model ensemble strategy allows quantifying the uncertainties arising from the model errors and the GCM-derived boundary conditions. To properly derive CITs at local scale, a quantile–quantile adjustment has been applied to the simulated regional scenarios. The method detects changes in the continuous CIT cumulative distribution functions (CDFs) between the recent past and successive time slices of the simulated climate and applies these changes, once calibrated, to the observed CDFs. </p><p>Assessments on the future climate potential for several types of tourist activities in Europe (i.e., sun, sea and sand (3S) tourism, cycling, cultural, football, golf, nautical and hiking) will be presented by applying suitable quantitative indicators of CIT evolutions adapted to regional contexts. It is expected that such kind of information will ultimately benefit the design of mitigation and adaptation strategies of the tourist sector.</p>


2015 ◽  
Vol 17 (1) ◽  
pp. 175-185

<div> <p>The present study analyses future climate uncertainty for the 21st century over Tamilnadu state for six weather parameters: solar radiation, maximum temperature, minimum temperature, relative humidity, wind speed and rainfall. The climate projection data was dynamically downscaled using high resolution regional climate models, PRECIS and RegCM4 at 0.22&deg;x0.22&deg; resolution. PRECIS RCM was driven by HadCM3Q ensembles (HQ0, HQ1, HQ3, HQ16) lateral boundary conditions (LBCs) and RegCM4 driven by ECHAM5 LBCs for 130 years (1971-2100). The deviations in weather variables between 2091-2100 decade and the base years (1971-2000) were calculated for all grids of Tamilnadu for ascertaining the uncertainty. These deviations indicated that all model members projected no appreciable difference in relative humidity, wind speed and solar radiation. The temperature (maximum and minimum) however showed a definite increasing trend with 1.8 to 4.0&deg;C and 2.0 to 4.8&deg;C, respectively. The model members for rainfall exhibited a high uncertainty as they projected high negative and positive deviations (-379 to 854 mm). The spatial representation of maximum and minimum temperature indicated a definite rhythm of increment from coastal area to inland. However, variability in projected rainfall was noticed.</p> </div> <p>&nbsp;</p>


MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 173-180
Author(s):  
NAVNEET KAUR ◽  
M.J. SINGH ◽  
SUKHJEET KAUR

This paper aims to study the long-term trends in different weather parameters, i.e., temperature, rainfall, rainy days, sunshine hours, evaporation, relative humidity and temperature over Lower Shivalik foothills of Punjab. The daily weather data of about 35 years from agrometeorological observatory of Regional Research Station Ballowal Saunkhri representing Lower Shivalik foothills had been used for trend analysis for kharif (May - October), rabi (November - April), winter (January - February), pre-monsoon (March - May), monsoon (June - September) and post monsoon (October - December) season. The linear regression method has been used to estimate the magnitude of change per year and its coefficient of determination, whose statistical significance was checked by the F test. The annual maximum temperature, morning and evening relative humidity has increased whereas rainfall, evaporation sunshine hours and wind speed has decreased significantly at this region. No significant change in annual minimum temperature and diurnal range has been observed. Monthly maximum temperature revealed significant increase except January, June and December, whereas, monthly minimum temperature increased significantly for February, March and October and decreased for June. Among different seasons, maximum temperature increased significantly for all seasons except winter season, whereas, minimum temperature increased significantly for kharif and post monsoon season only. The evaporation, sunshine hours and wind speed have also decreased and relative humidity decreased significantly at this region. Significant reduction in kharif, monsoon and post monsoon rainfall has been observed at Lower Shivalik foothills. As the region lacks assured irrigation facilities so decreasing rainfall and change in the other weather parameters will have profound effects on the agriculture in this region so there is need to develop climate resilient agricultural technologies.


2021 ◽  
Vol 40 (4) ◽  
pp. 740-750
Author(s):  
F.O. Aweda ◽  
J.O. Agbolade ◽  
J.A. Oyewole ◽  
M. Sanni

The year in year out variation in atmospheric parameters, solar radiation, and meteorological variables such as ambient temperature, relative humidity RH, wind speed etc, are posies that can be and are used to describe the atmospheric conditions. Ten years of data obtained from the Nigerian Meteorological Agency (NiMet) was analysed. Results showed that solar radiation rises from January to get to its peak in April which is maintained till August before it begins to fall again with the Sudan savanna area (Maiduguri) having a value of (15.70 MJm-2month-1) and freshwater swamp area (Ikeja) having the value of (10.16 MJm-2month-1). The extraterrestrial radiations calculated for the two stations are 333.53 (MJm-2month-1) and 195.53 (MJm-2month-1) respectively. However, the relative humidity of Ikeja (84.54%) is higher as compared to that of Maiduguri (42.23%). The minimum temperature ranges observed for the two stations varies from (22 - 24)0C and (12 - 26)°C, while the maximum temperature was as high as 33°C and 40°C obtained in April for Ikeja and Maiduguri, respectively. Similarly, the average wind speed is higher for Ikeja (4.97m/s) than for Maiduguri (4.62m/s). The result of the statistical correlation reveals that, in Maiduguri, solar radiation was found to have a significant negative relationship with relative humidity (r = -.256, p<0.01) and a significant positive relationship with minimum and maximum temperature (p<0.05). This means that minimum and maximum temperatures increase as solar radiation increases (p<0.05). Relative humidity decreases as solar radiation increases. In Ikeja, solar radiation was found to have a significant negative relationship with relative humidity (r =-.350, p<0.01) and wind speed (r = -146, p<0.05) and significant positive relationship with minimum temperature (r =.410, p<0.05) and maximum temperature (r =.575, p<0.01). In conclusion, the variables like relative humidity, minimum temperature and wind speed are higher in the freshwater swamp area of Nigeria as compared to the Sudan savanna area, while the solar radiation, extraterrestrial radiation and maximum temperature are generally higher in the Sudan savanna area of Nigeria.


Author(s):  
S. A. Naveen ◽  
S. Kokilavani ◽  
S. P. Ramanathan ◽  
G. A. Dheebakaran ◽  
S. Anitta Fanish

An investigation was carried out at the Agro Climate Research Centre, Tamil Nadu Agricultural University, on the effect of weather parameters on the green gram yield sown at various sowing dates during the rabi season of 2019. At various sowing dates, two green gram cultivars, VBN 4 and ADT 3, were sown. For both cultivars, the phonological crop length decreased with delays in sowing dates beyond October 23rd. The yield of green gram sown on 23rd October was significantly higher than the crops sown on 30th October and 6th November. The weather parameters Maximum Temperature (Tmax), Diurnal Range (Trange), Bright Sunshine Hours (BSS), Relative Humidity (RH I), Wind Speed (WS) were found to be negatively correlated with seed yield whereas Minimum Temperature (Tmin), Relative Humidity (RH II), Vapour Pressure (VP) were found to be positively correlated with the yield of green gram. The accurate prediction of green gram yield could be done with the maximum temperature, bright sunshine hours, wind speed and with thermal indices especially hygrothermal unit II with 82 percent, accuracy level.


2012 ◽  
Vol 59 (1) ◽  
pp. 325-333 ◽  
Author(s):  
Małgorzata Puc

Betula pollen is a common cause of pollinosis in northern and central Europe. The aim of the study was to characterize the birch pollen seasons in Szczecin in 2000 - 2004 and diurnal periodicity of pollen in the air. Measurements were performed using the volumetric method. The analysed meteorological parameters were the maximum temperature, relative humidity, rainfall and wind speed. The beginning and end of a season were established by the 95% method. During five studied years the highest concentration of birch pollen in the air was noted in 2003, with the pollen season starting in the middle of April and lasting till the 11<sup>th</sup> of May. The highest pollen count of 5736 grains per 1m<sup>3</sup> was observed in the end of April. Two peaks of the of birch pollen grains per 1m<sup>3</sup> were observed daily. The highest concentration was noted between 2-4 p.m. A positive and statistically significant correlation was found between the birch pollen concentration and air temperature and wind speed. A negative correlation was found in case of the relative humidity. Besides the individual rhythm of pollination, the meteorological conditions are the most important factors influencing the birch pollen concentration in the air.


2020 ◽  
Vol 8 (5) ◽  
pp. 1862-1867

Groundnut (Arachis hypogaea) is one among the most important oil seed crop cultivated in India. Tikka leaf spot and Rust are the major disease of groundnut that effects on production and productivity. The prediction was made based on factors such as minimum and maximum temperature, morning and evening humidity, wind speed, sunshine hours that quantifies the disease infestation in groundnut. The relationship between the weather, pest and disease infestation are identified which supports the model to predict the occurrence of the disease. The observations were recorded at an interval of one week from the occurrence of tikka and rust. The percent disease intensity is calculated based on the scale explained by Mayee and Data. The favourable climatic conditions for tikka and rust disease development ranges between 26OC – 31OC and 25OC – 30OC respectively, relative humidity greater than 85%, prolonged heavy rainfall, wind speed and rain. The rules are generated based on the recorded observation and the weather parameters. The main objective is to diagnose the existence of tikka and rust disease coupled with weather parameters.


Sign in / Sign up

Export Citation Format

Share Document