scholarly journals Inter-spatial heat vulnerability assessment of Summer - 2018 over Madhya Pradesh using discomfort (wind and thermal) indices

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 105-114
Author(s):  
VED.PRAKASH SINGH ◽  
JIMSON MATHEW ◽  
I.J. VERMA

Due to global warming, increase in air temperature is a growing concern at present. This rise in temperature may cause mild to severe thermal discomfort and heat related hazards mostly for the people who are engaged in outside activities throughout the day. The present study shows the inter-spatial monthly distribution of thermal patches over major stations of Madhya Pradesh, viz., Bhopal, Gwalior, Indore, Jabalpur, Hoshangabad, Rewa, Ratlam, Ujjain, Dhar etc. In this study, various Heat Indices applicable for tropical climate including Wet Bulb Globe Temperature (WBGT) are used to estimate the thermal stress by analyzing the meteorological data of Summer-2018 in Madhya Pradesh. Study was carried out for computing indoor, shady and outdoor heat stress separately and heat transfer rates to identify the places vulnerable to severe heat stroke in the month of March, April and May in 2018.It is observed that declaration of heat wave alone at any station is not sufficient for the administration and health organizations to take precautionary actions; also, discomfort indices should be referred for impact based monitoring and making work schedules. It is found that March and April fall in the partial discomfort category for at least half of the districts in Madhya Pradesh. It is interesting to note that several districts fall in discomfort category in outdoor conditions but not in indoor or shady conditions in May month. Severe stresses are observed mainly in the West and Central Madhya Pradesh during April and May months. Comparison of various Heat Indices is too performed along with computing Tropical Summer Index (TSI) and Apparent Temperature (AT) to indicate real feel-like temperatures in Madhya Pradesh during extreme temperature events.

Author(s):  
Sajad Zare ◽  
Naser Hasheminejad ◽  
Mokhles Bateni ◽  
Mohammad Reza Baneshi ◽  
Hossein Elahi Shirvan ◽  
...  

2019 ◽  
Vol 54 (9) ◽  
pp. 921-928 ◽  
Author(s):  
Zachary Y. Kerr ◽  
Samantha E. Scarneo-Miller ◽  
Susan W. Yeargin ◽  
Andrew J. Grundstein ◽  
Douglas J. Casa ◽  
...  

Context Exertional heat stroke (EHS) is a leading cause of sudden death in high school football players. Preparedness strategies can mitigate EHS incidence and severity. Objective To examine EHS preparedness among high school football programs and its association with regional and state preseason heat-acclimatization mandates. Design Cross-sectional study. Setting Preseason high school football programs, 2017. Patients or Other Participants A total of 910 athletic trainers (ATs) working with high school football (12.7% completion rate). Main Outcome Measure(s) We acquired data on high school football programs' EHS preparedness strategies in the 2017 preseason via an online questionnaire, looking at (1) whether schools' state high school athletic associations mandated preseason heat-acclimatization guidelines and (2) heat safety region based on warm-season wet-bulb globe temperature, ranging from the milder region 1 to the hotter region 3. Six EHS-preparedness strategies were assessed: EHS recognition and treatment education; policy for initiating emergency medical services response; emergency response plan enactment; immersion tub filled with ice water before practice; wet-bulb globe temperature monitoring; and hydration access. Multivariable binomial regression models estimated the prevalence of reporting all 6 strategies. Results Overall, 27.5% of ATs described their schools as using all 6 EHS-preparedness strategies. The highest prevalence was in region 3 schools with state mandates (52.9%). The multivariable model demonstrated an interaction in which the combination of higher heat safety region and presence of a state mandate was associated with a higher prevalence of reporting all 6 strategies (P = .05). Controlling for AT and high school characteristics, the use of all 6 strategies was higher in region 3 schools with state mandates compared with region 1 schools without state mandates (52.9% versus 17.8%; prevalence ratio = 2.68; 95% confidence interval = 1.81, 3.95). Conclusions Our findings suggest a greater use of EHS-preparedness strategies in environmentally warmer regions with state-level mandates for preseason heat acclimatization. Future researchers should identify factors influencing EHS preparedness, particularly in regions 1 and 2 and in states without mandates.


2017 ◽  
Vol 52 (12) ◽  
pp. 1161-1167 ◽  
Author(s):  
Earl Cooper ◽  
Andrew Grundstein ◽  
Adam Rosen ◽  
Jessica Miles ◽  
Jupil Ko ◽  
...  

Context:  Wet bulb globe temperature (WBGT) is the gold standard for assessing environmental heat stress during physical activity. Many manufacturers of commercially available instruments fail to report WBGT accuracy. Objective:  To determine the accuracy of several commercially available WBGT monitors compared with a standardized reference device. Design:  Observational study. Setting:  Field test. Patients or Other Participants:  Six commercially available WBGT devices. Main Outcome Measure(s):  Data were recorded for 3 sessions (1 in the morning and 2 in the afternoon) at 2-minute intervals for at least 2 hours. Mean absolute error (MAE), root mean square error (RMSE), mean bias error (MBE), and the Pearson correlation coefficient (r) were calculated to determine instrument performance compared with the reference unit. Results:  The QUESTemp° 34 (MAE = 0.24°C, RMSE = 0.44°C, MBE = –0.64%) and Extech HT30 Heat Stress Wet Bulb Globe Temperature Meter (Extech; MAE = 0.61°C, RMSE = 0.79°C, MBE = 0.44%) demonstrated the least error in relation to the reference standard, whereas the General WBGT8778 Heat Index Checker (General; MAE = 1.18°C, RMSE = 1.34°C, MBE = 4.25%) performed the poorest. The QUESTemp° 34 and Kestrel 4400 Heat Stress Tracker units provided conservative measurements that slightly overestimated the WBGT provided by the reference unit. Finally, instruments using the psychrometric wet bulb temperature (General, REED Heat Index WBGT Meter, and WBGT-103 Heat Stroke Checker) tended to underestimate the WBGT, and the resulting values more frequently fell into WBGT-based activity categories with fewer restrictions as defined by the American College of Sports Medicine. Conclusions:  The QUESTemp° 34, followed by the Extech, had the smallest error compared with the reference unit. Moreover, the QUESTemp° 34, Extech, and Kestrel units appeared to offer conservative yet accurate assessments of the WBGT, potentially minimizing the risk of allowing physical activity to continue in stressful heat environments. Instruments using the psychrometric wet bulb temperature tended to underestimate WBGT under low wind-speed conditions. Accurate WBGT interpretations are important to enable clinicians to guide activities in hot and humid weather conditions.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 835
Author(s):  
Malcolm N. Mistry

Meteorological human discomfort indices or bioclimatic indices are important metrics to gauge potential risks to human health under varying environmental thermal exposures. Derived using sub-daily meteorological variables from a quality-controlled reanalysis data product (Global Land Data Assimilation System—GLDAS), a new high-resolution global dataset referred to as “HDI_0p25_1970_2018” is presented in this study. The dataset includes the following daily indices at 0.25° × 0.25° gridded resolution: (i) Apparent Temperature indoors (ATind); (ii) two variants of Apparent Temperature outdoors in shade (ATot); (iii) Heat Index (HI); (iv) Humidex (HDEX); (v) Wet Bulb Temperature (WBT); (vi) two variants of Wet Bulb Globe Temperature (WBGT); (vii) Thom Discomfort Index (DI); and (viii) Windchill Temperature (WCT). Spanning 49 years over the period 1970–2018, HDI_0p25_1970_2018 fills gaps in existing climate indices datasets by being the only high-resolution historical global-gridded daily time-series of multiple human discomfort indices based on different meteorological parameters, thus offering applications in wide-ranging climate zones and thermal-comfort environments.


Author(s):  
Francesco Chirico ◽  
Nicola Magnavita

In their review, Kownacki et al. showed some practical and easy to use workplace heat indices that are useful for indoor environments, namely the “Wet Bulb Globe Temperature” (WBGT), the “Predicted Heat Strain” (PHS) model, the “Thermal Work Limit” (TWL), the “Equivalent Temperature” (ET) and the thermal comfort index “PMV/PPD”. In this letter, the authors explain why the modified PMV/PPD method together with the indices combining temperature with humidity, such as the “Humidex Index” and the “Heat Index”, could be a more feasible and useful tool for evaluating potential thermal stress in indoor environments for both the occupational and general population.


Author(s):  
Yuri Hosokawa ◽  
William M. Adams ◽  
Douglas J. Casa ◽  
Jennifer K. Vanos ◽  
Earl R. Cooper ◽  
...  

Objective To develop best-practice recommendations using thermal indices to determine work-to-rest ratios and facilitate further implementation of environmental monitoring for heat safety in secondary school athletics in the United States. Data Sources A narrative review of the current literature in environmental monitoring for heat safety during athletics was conducted by content experts. A list of action-oriented recommendations was established from the narrative review and further refined using the Delphi method. Conclusions Assessment of wet bulb globe temperature at the site of activity throughout the duration of the event is recommended to assist clinicians and administrators in making appropriate decisions regarding the duration and frequency of activity and rest periods. Activity modification guidelines should be predetermined and approved by stakeholders and should outline specific actions to be followed, such as the work-to-rest ratio, frequency and timing of hydration breaks, and adjustment of total exercise duration, equipment, and clothing. Furthermore, integration of exertional heat illness injury data with environmental condition characteristics is critical for the development of evidence-based heat safety guidelines for secondary school athletics. Athletic trainers play an essential role in conducting prospective injury data collection, recording onsite wet bulb globe temperature levels, and implementing recommendations to protect the health and safety of athletes.


2013 ◽  
pp. 47-57
Author(s):  
Van Trong Le ◽  
Thi Tuyet Mai Nguyen ◽  
Thi Xuan Duyen Nguyen ◽  
Ba Luan Nguyen ◽  
Tuyen Pham ◽  
...  

Objectives: Presents heat stress Standard ISO 7243, which is based upon the wet bulb globe temperature index (WBGT), and considers its suitability for use worldwide. Materials and Methods: The WBGT index are considered and how it is used in ISO 7243 and across the world as a simple index for monitoring and assessing hot environments. Results: Management systems, involving risk assessments, that take account of context and culture, are required to ensure successful use of the standard and global applicability. For use outdoors, a WBGT equation that includes solar absorptivity is recommended. A ‘clothed WBGT’ is proposed to account for the effects of clothing. Conclusion: ISO 7243 is a simple tool to assess the heat stress and may be applicated worldwide.


Sign in / Sign up

Export Citation Format

Share Document