scholarly journals Outbreak of Clostridium perfringens type D enterotoxemia in sheep

2019 ◽  
Vol 40 (6) ◽  
pp. 2593
Author(s):  
Felipe Masiero Salvarani ◽  
Mayane Faccin ◽  
Nayra Fernanda de Queiroz Ramos Freitas ◽  
Mônica Regina de Matos ◽  
Edismair Carvalho Garcia ◽  
...  

This work describes the first Brazilian laboratory-confirmed outbreak of enterotoxemia caused by Clostridium perfringens type D in sheep, which occurred in the state of Paraná. We address the epidemiological aspects involved, the diagnostic modalities employed, and the clinical signs and pathological findings observed. Eight healthy pregnant female sheep with no history of vaccination for clostridiosis presented with a history of abrupt feeding changes and neurological manifestations that quickly evolved to illness, coma and death. Four other females with clinical neurological signs were referred to the Veterinary Hospital of the Universidade Federal do Paraná, Palotina Sector. These animals presented with lethargy, motor incoordination, opisthotonus, pedal movements, muscle tremors, spastic paralysis, bruxism, mandibular trismus, sialorrhea, hyperexcitability and the inability to stand. They were examined and euthanized due to the seriousness of the clinical picture with an unfavorable prognosis. We performed gross anatomical and microscopic analyses of the organs and intestinal contents. We also performed bacterial isolation with molecular typing. From the intestinal contents, we detected toxins by means of the seroneutralization technique in mice. At necropsy, we noted pulmonary edema (2/4), necrotizing enteritis (4/4) and hyperemia of the leptomeninges (1/4). Microscopically, we observed lymphohistiocytic interstitial pneumonia, necrotic enteritis associated with the presence of rods, and nephrosis with interstitial lymphohistiocytic nephritis. No significant brain lesions were observed. Using serum neutralization, we identified epsilon toxin in the intestinal contents of all four animals. C. perfringens type D was identified. Based on the history, clinical signs, postmortem findings, and laboratory confirmation of the presence of epsilon toxin, we concluded that C. perfringens type D enterotoxemia caused this outbreak of sheep deaths.

2007 ◽  
Vol 75 (9) ◽  
pp. 4282-4288 ◽  
Author(s):  
Mariano E. Fernandez-Miyakawa ◽  
Sameera Sayeed ◽  
Derek J. Fisher ◽  
Rachael Poon ◽  
Vicki Adams ◽  
...  

ABSTRACT Clostridium perfringens type D isolates cause enterotoxemia in sheep, goats, and probably cattle. While the major disease signs and lesions of type D animal disease are usually attributed to epsilon toxin, a class B select agent, these bacteria typically produce several lethal toxins. Understanding of disease pathogenesis and development of improved vaccines are hindered by the lack of a small-animal model mimicking natural disease caused by type D isolates. Addressing this need, we developed an oral challenge mouse model of C. perfringens type D enterotoxemia. When BALB/c mice with a sealed anus were inoculated by intragastric gavage with type D isolates, 7 of 10 type D isolates were lethal, as defined by spontaneous death or severe clinical signs necessitating euthanasia. The lethalities of the seven type D isolates varied between 14 and 100%. Clinical signs in the lethally challenged mice included seizures, convulsions, hyperexcitability, and/or depression. Mild intestinal gas distention and brain edema were observed at necropsy in a few mice, while histology showed multifocal acute tubular necrosis of the kidney and edema in the lungs of most challenged mice that developed a clinical response. When the lethality of type D isolates in this model was compared with in vitro toxin production, only a limited correlation was observed. However, mice could be protected against lethality by intravenous passive immunization with an epsilon toxin antibody prior to oral challenge. This study provides an economical new model for studying the pathogenesis of C. perfringens type D infections.


2015 ◽  
Vol 177 (15) ◽  
pp. 390-390 ◽  
Author(s):  
A. L. Jones ◽  
M. P. Dagleish ◽  
G. L. Caldow

The aims of this study were to describe 42 cases of Clostridium perfringens type-D enterotoxaemia in cattle seen between 2003 and 2014 and to determine the diagnostic value of detecting epsilon toxin in bovine intestinal content. All cases in the series had histological brain changes considered pathognomonic for C. perfringens type-D enterotoxaemia in sheep and goats and the epsilon toxin of C. perfringens was concurrently detected in the intestinal contents of 15 (36 per cent) cases. The data from the case series indicate that intestinal epsilon toxin has a sensitivity of 56 per cent compared with histology of the brain for diagnosis of bovine C. perfringens type-D enterotoxaemia. The diagnostic specificity of detecting epsilon toxin in bovine intestinal content was investigated by screening intestinal contents of 60 bovine carcases submitted for postmortem examination. Epsilon toxin was detected in 11 (18 per cent) carcases but no pathognomonic histological brain change was found in any. The specificity of intestinal epsilon toxin was estimated to be 80.4 per cent. These studies demonstrate that for a definitive diagnosis of C. perfringens type-D enterotoxaemia in cattle histological examination of the brain is essential as the presence of epsilon toxin in the intestinal contents alone is neither sensitive nor specific enough.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Jihong Li ◽  
Menglin Ma ◽  
Mahfuzur R. Sarker ◽  
Bruce A. McClane

ABSTRACT CodY is known to regulate various virulence properties in several Gram-positive bacteria but has not yet been studied in the important histotoxic and intestinal pathogen Clostridium perfringens. The present study prepared an isogenic codY-null mutant in C. perfringens type D strain CN3718 by insertional mutagenesis using the Targetron system. Western blot analysis indicated that, relative to wild-type CN3718 or a complementing strain, this isogenic codY mutant produces reduced levels of epsilon toxin (ETX). Using supernatants from cultures of the wild-type, codY-null mutant, and complementing strains, CodY regulation of ETX production was shown to have cytotoxic consequences for MDCK cells. The CodY regulatory effect on ETX production was specific, since the codY-null mutant still made wild-type levels of alpha-toxin and perfringolysin O. Sialidase activity measurements and sialidase Western blot analysis of supernatants from CN3718 and its isogenic derivatives showed that CodY represses overall exosialidase activity due to a reduced presence of NanH in culture supernatants. Inactivation of the codY gene significantly decreased the adherence of CN3718 vegetative cells or spores to host Caco-2 cells. Finally, the codY mutant showed increased spore formation under vegetative growth conditions, although germination of these spores was impaired. Overall, these results identify CodY as a global regulator of many C. perfringens virulence-associated properties. Furthermore, they establish that, via CodY, CN3718 coordinately regulates many virulence-associated properties likely needed for intestinal infection. IMPORTANCE Clostridium perfringens is a major human and livestock pathogen because it produces many potent toxins. C. perfringens type D strains cause intestinal infections by producing toxins, especially epsilon toxin (ETX). Previous studies identified CodY as a regulator of certain virulence properties in other Gram-positive bacteria. Our study now demonstrates that CodY is a global regulator of virulence-associated properties for type D strain CN3718. It promotes production of ETX, attachment of CN3718 vegetative cells or spores to host enterocyte-like Caco-2 cells, and spore germination; the last two effects may assist intestinal colonization. In contrast, CodY represses sporulation. These results provide the first evidence that CodY can function as a global regulator of C. perfringens virulence-associated properties and that this strain coordinately regulates its virulence-associated properties using CodY to increase ETX production, host cell attachment, and spore germination but to repress sporulation, as would be optimal during type D intestinal infection.


2020 ◽  
Vol 32 (2) ◽  
pp. 282-286 ◽  
Author(s):  
John W. Finnie ◽  
Mauricio A. Navarro ◽  
Francisco A. Uzal

Clostridium perfringens type D epsilon toxin (EXT) causes an important neurologic disorder of sheep, goats and, rarely, cattle. The disease can occur in peracute, acute, subacute, and chronic forms. High circulating levels of ETX produce vasculocentric brain lesions, in which microvascular endothelial injury results in diagnostically useful perivascular and intramural extravasations of plasma protein, especially in sheep, and less frequently in goats. With lower toxin doses, a more protracted clinical course tends to occur, particularly in sheep, leading to focal, bilaterally symmetrical, necrotic foci in certain brain regions. Although these morphologic features usually permit the diagnostic pathologist to make a definitive etiologic diagnosis, there are many aspects of the pathogenesis of these cerebral lesions that are not completely understood. ETX has also been shown to produce microvascular damage in the retina of rats, resulting in severe, diffuse vasogenic edema, similar to that found in brains exposed to this neurotoxin. The pathoclisis and vascular theories offer alternative explanations of the differential susceptibility of different brain regions to the same neurotoxic insult.


1975 ◽  
Vol 9 (2) ◽  
pp. 153-154 ◽  
Author(s):  
R. W. Moore ◽  
H. H. Greenlee

Clostridium perfringens (type D) toxin was identified as the cause of sudden deaths in chinchillas. The highest incidence was at 2-4 months of age. Only a few were observed with clinical signs before death occurred. A vaccination program was highly effective.


2009 ◽  
Vol 191 (11) ◽  
pp. 847-851 ◽  
Author(s):  
Luciana A. Gonçalves ◽  
Zélia I. P. Lobato ◽  
Rodrigo O. S. Silva ◽  
Felipe M. Salvarani ◽  
Prhiscylla S. Pires ◽  
...  

2015 ◽  
Vol 197 (20) ◽  
pp. 3339-3353 ◽  
Author(s):  
Jihong Li ◽  
John C. Freedman ◽  
Bruce A. McClane

ABSTRACTClostridium perfringenstype D strains are usually associated with diseases of livestock, and their virulence requires the production of epsilon toxin (ETX). We previously showed (J. Li, S. Sayeed, S. Robertson, J. Chen, and B. A. McClane, PLoS Pathog 7:e1002429, 2011,http://dx.doi.org/10.1371/journal.ppat.1002429) that BMC202, ananInull mutant of type D strain CN3718, produces less ETX than wild-type CN3718 does. The current study proved that the lower ETX production by strain BMC202 is due tonanIgene disruption, since both genetic and physical (NanI or sialic acid) complementation increased ETX production by BMC202. Furthermore, a sialidase inhibitor that interfered with NanI activity also reduced ETX production by wild-type CN3718. The NanI effect on ETX production was shown to involve reductions incodYandccpAgene transcription levels in BMC202 versus wild-type CN3718. Similar to CodY, CcpA was found to positively control ETX production. A doublecodYccpAnull mutant produced even less ETX than acodYorccpAsingle null mutant. CcpA bound directly to sequences upstream of theetxorcodYstart codon, and bioinformatics identified putative CcpA-bindingcresites immediately upstream of both thecodYandetxstart codons, suggesting possible direct CcpA regulatory effects. AccpAmutation also decreasedcodYtranscription, suggesting that CcpA effects on ETX production can be both direct and indirect, including effects oncodYtranscription. Collectively, these results suggest that NanI, CcpA, and CodY work together to regulate ETX production, with NanI-generated sialic acid from the intestines possibly signaling type D strains to upregulate their ETX production and induce disease.IMPORTANCEClostridium perfringensNanI was previously shown to increase ETX binding to, and cytotoxicity for, MDCK host cells. The current study demonstrates that NanI also regulates ETX production via increased transcription of genes encoding the CodY and CcpA global regulators. Results obtained using singleccpAorcodYnull mutants and accpAcodYdouble null mutant showed thatcodYandccpAregulate ETX production independently of one another but thatccpAalso affectscodYtranscription. Electrophoretic mobility shift assays and bioinformatic analyses suggest that both CodY and CcpA may directly regulateetxtranscription. Collectively, results of this study suggest that sialic acid generated by NanI from intestinal sources signals ETX-producingC. perfringensstrains, via CcpA and CodY, to upregulate ETX production and cause disease.


2003 ◽  
Vol 15 (2) ◽  
pp. 94-99 ◽  
Author(s):  
F. A. Uzal ◽  
W. R. Kelly ◽  
R. Thomas ◽  
M. Hornitzky ◽  
F. Galea

Polyclonal capture enzyme-linked immunosorbent assay (PC-ELISA), monoclonal capture ELISA (MC-ELISA), mouse neutralization test (MNT), and counterimmunoelectrophoresis (CIEP), were compared for their ability to detect epsilon toxin in intestinal contents and body fluids of sheep and goats. When used to evaluate intestinal contents of sheep artificially spiked with epsilon prototoxin, PC-ELISA detected 0.075 mouse lethal dose (MLD)50/ml, whereas the MNT, MC-ELISA, and CIEP detected 6, 25, and 50 MLD50/ml, respectively. Amounts of epsilon toxin detected by PC-ELISA, MC-ELISA, MNT, and CIEP in sheep pericardial fluid artificially spiked with epsilon prototoxin were 0.075, 0.75, 6, and 200 MLD50/ml, respectively. For assaying epsilon toxin in aqueous humor, PC-ELISA and MC-ELISA detected 0.075 MLD50/ml, whereas CIEP detected 200 MLD50/ml (MNT was not evaluated). When 51 samples of intestinal contents of sheep and goats (32 positive and 19 negative to MNT) were analyzed by the other 3 techniques, the relative sensitivity of PC-ELISA, MC-ELISA, and CIEP was 93.75, 84.37, and 37.50%, respectively. The specificity of PC-ELISA, MC-ELISA, and CIEP was 31.57, 57.89, and 84.21%, respectively. The absolute sensitivity of PC-ELISA, MC-ELISA, CIEP, and MNT was 90.90, 69.69, 15.15, and 54.54%. The absolute specificity of the 4 techniques was 100%. These results show that there is a marked inconsistency among techniques routinely used to detect Clostridium perfringens epsilon toxin. Until more consistent results are achieved, the diagnosis of enterotoxemia should not only be based solely on epsilon toxin detection, but also on clinical and pathological data.


Sign in / Sign up

Export Citation Format

Share Document