scholarly journals In vitro and in vivo parameters for identification of landrace pigs with low reproductive performance

2022 ◽  
Vol 43 (2) ◽  
pp. 573-584
Author(s):  
Fábio da Costa Málaga ◽  
◽  
Helloa Alaide Siqueira ◽  
Lucio Pereira Rauber ◽  
Mariana Groke Marques ◽  
...  

In pig farming, measurements of production parameters play a fundamental role in the success of the activity. Minimal differences in fertility between breeders can lead to less reproductive efficiency and, less productivity. However, assessing the fertility of each male and the early identification of subfertile males is a difficult task to be performed. Thus, the aim of this study was to evaluate the use of in vitro and in vivo parameters in the identification of subfertile males of the Landrace breed, aiming to collaborate with genetic improvement programs, routine optimization in the Genetic Diffusion Units (GDUs) and the results of performance. In experiment 1, an approach to identify males with subfertility was evaluated based on retrospective data. For this, the results (averages of birth rates, number of total births and average percentages of female and male piglets per litter) were evaluated for a total of 996 matings and 847 parturitions. The inseminations came from ejaculates of 32 males, who had at least 19 females inseminated with homospermic doses in the concentration of 2.5 x 109 total sperm from the same male. As for the birth rate (BR), an average of 85.47% ± 6.05 was observed with a group of median males, seven males that stood out and one individual (M32) with a performance of 58.06% ± 9.0. For the total number of piglets born (PB) the average was 13.41 ± 0.56, with three males with better performance and one (M32) with very poor performance (8.62 ± 0.59). In experiment 2, it was verified whether evaluations of inseminating doses (ID) of semen in vitro (motility and sperm morphology) after 96 hours of storage had correlations with fertility in vivo, which can be used to identify subfertile males. The evaluations were performed on 30 ejaculates regarding the means of BR and PB, considering only those who had at least 7 females inseminated. There were no correlations between the motility assessments and semen morphological changes and the reproductive parameters evaluated. The results obtained in vivo, referring to BR and PB, demonstrated that it was possible to identify differences between males, the individual (M32) had the worst results for the percentages of BR and PB. It is concluded that there are males of high and low fertility and that only the in vitro analyzes carried out in this study are not enough to categorize them, however, the evaluation of retrospective data was efficient for this purpose.

2002 ◽  
Vol 22 (5) ◽  
pp. 1474-1487 ◽  
Author(s):  
Ulf Dahl ◽  
Anders Sjödin ◽  
Lionel Larue ◽  
Glenn L. Radice ◽  
Stefan Cajander ◽  
...  

ABSTRACT The distinct expression of R-cadherin in the induced aggregating metanephric mesenchyme suggests that it may regulate the mesenchymal-epithelial transition during kidney development. To address whether R-cadherin is required for kidney ontogeny, R-cadherin-deficient mice were generated. These mice appeared to be healthy and were fertile, demonstrating that R-cadherin is not essential for embryogenesis. The only kidney phenotype of adult mutant animals was the appearance of dilated proximal tubules, which was associated with an accumulation of large intracellular vacuoles. Morphological analysis of nephrogenesis in R-cadherin −/− mice in vivo and in vitro revealed defects in the development of both ureteric bud-derived cells and metanephric mesenchyme-derived cells. First, the morphology and organization of the proximal parts of the ureteric bud epithelium were altered. Interestingly, these morphological changes correlated with an increased rate of apoptosis and were further supported by perturbed branching and patterning of the ureteric bud epithelium during in vitro differentiation. Second, during in vitro studies of mesenchymal-epithelial conversion, significantly fewer epithelial structures developed from R-cadherin −/− kidneys than from wild-type kidneys. These data suggest that R-cadherin is functionally involved in the differentiation of both mesenchymal and epithelial components during metanephric kidney development. Finally, to investigate whether the redundant expression of other classic cadherins expressed in the kidney could explain the rather mild kidney defects in R-cadherin-deficient mice, we intercrossed R-cadherin −/− mice with cadherin-6−/− , P-cadherin −/−, and N-cadherin +/− mice. Surprisingly, however, in none of the compound knockout strains was kidney development affected to a greater extent than within the individual cadherin knockout strains.


Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 363
Author(s):  
Bin Wan ◽  
Lei Yang ◽  
Jiao Zhang ◽  
Liming Qiu ◽  
Qi Fang ◽  
...  

The pupal ectoparasitoid Pachycrepoideus vindemiae injects venom into its fly hosts prior to oviposition. We have shown that this venom causes immune suppression in Drosophila melanogaster pupa but the mechanism involved remained unclear. Here, we show using transgenic D. melanogaster with fluorescent hemocytes that the in vivo number of plasmatocytes and lamellocytes decreases after envenomation while it has a limited effect on crystal cells. After in vitro incubation with venom, the cytoskeleton of plasmatocytes underwent rearrangement with actin aggregation around the internal vacuoles, which increased with incubation time and venom concentration. The venom also decreased the lamellocytes adhesion capacity and induced nucleus fragmentation. Electron microscopy observation revealed that the shape of the nucleus and mitochondria became irregular after in vivo incubation with venom and confirmed the increased vacuolization with the formation of autophagosomes-like structures. Almost all venom-treated hemocytes became positive for TUNEL assays, indicating massive induced apoptosis. In support, the caspase inhibitor Z-VAD-FMK attenuated the venom-induced morphological changes suggesting an involvement of caspases. Our data indicate that P. vindemiae venom inhibits D. melanogaster host immunity by inducing strong apoptosis in hemocytes. These assays will help identify the individual venom component(s) responsible and the precise mechanism(s)/pathway(s) involved.


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 547
Author(s):  
Marina Ramal-Sanchez ◽  
Antonella Fontana ◽  
Luca Valbonetti ◽  
Alessandra Ordinelli ◽  
Nicola Bernabò ◽  
...  

Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way.


Author(s):  
Thriveni Vasanth Kumar ◽  
Manjunatha H. ◽  
Rajesh Kp

Objective: Dietary curcumin and capsaicin are well known for their health beneficial potencies. The current study was done to assess the anti-inflammatory activity of curcumin, capsaicin and their combination by employing in vitro and in vivo models.Methods: We investigated the protective effect of curcumin, capsaicin and their combination using in vitro heat induced human red blood cell (HRBC) membrane stabilisation, in vivo 3% agar induced leukocyte mobilisation and acetic acid induced vascular permeability assay.Results: Curcumin, capsaicin and their combination exhibited concentration dependent protective effect against heat-induced HRBC membrane destabilisation, while combined curcumin and capsaicin restored 87.0±0.64 % membrane stability and it is found to be better than curcumin, capsaicin and diclofenac sodium (75.0±0.25. 72±0.9 and 80.0±0.31 %) protective effect. In agar suspension induced leukocyte mobilization assay, the combined curcumin and capsaicin had shown 39.5±1.58 % of inhibition compared to individual curcumin and capsaicin, which showed moderate inhibition of 16.0±3.14 and 21.6±2.17 % respectively. Besides, the combined curcumin and capsaicin had shown highly significant inhibition of acetic acid-induced vascular permeability in rats (62.0±3.14 %), whereas individual curcumin and capsaicin showed moderate inhibition of vascular permeability with 36.0±2.41 and 43.0±1.92 % respectively.Conclusion: This study demonstrates the significant anti-inflammatory property of combined curcumin and capsaicin at half of the individual concentration of curcumin and capsaicin.


2015 ◽  
Vol 210 (5) ◽  
pp. 771-783 ◽  
Author(s):  
Norbert Bencsik ◽  
Zsófia Szíber ◽  
Hanna Liliom ◽  
Krisztián Tárnok ◽  
Sándor Borbély ◽  
...  

Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.


RNA ◽  
2022 ◽  
pp. rna.078814.121
Author(s):  
Anna Ender ◽  
Nadine Grafl ◽  
Tim Kolberg ◽  
Sven Findeiss ◽  
Peter F. Stadler ◽  
...  

Removal of the 5' leader region is an essential step in the maturation of tRNA molecules in all domains of life. This reaction is catalyzed by various RNase P activities, ranging from ribonucleoproteins with ribozyme activity to protein-only forms. In Escherichia coli, the efficiency of RNase P mediated cleavage can be controlled by computationally designed riboswitch elements in a ligand-dependent way, where the 5' leader sequence of a tRNA precursor is either sequestered in a hairpin structure or presented as a single-stranded region accessible for maturation. In the presented work, the regulatory potential of such artificial constructs is tested on different forms of eukaryotic RNase P enzymes – two protein-only RNase P enzymes (PRORP1 and PRORP2) from Arabidopsis thaliana and the ribonucleoprotein of Homo sapiens. The PRORP enzymes were analyzed in vitro as well as in vivo in a bacterial RNase P complementation system. We also tested in HEK293T cells whether the riboswitches remain functional with human nuclear RNase P. While the regulatory principle of the synthetic riboswitches applies for all tested RNase P enzymes, the results also show differences in the substrate requirements of the individual enzyme versions. Hence, such designed RNase P riboswitches represent a novel tool to investigate the impact of the structural composition of the 5'-leader on substrate recognition by different types of RNase P enzymes.


Reproduction ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Christina Simon ◽  
Almuth Einspanier

Controversy still exists regarding the involvement of relaxin (RLX) in cervical reorganization throughout parturition in the human, despite its well-known role in facilitating extensive extracellular matrix (ECM) remodeling in diverse organs. Therefore, the aim of the present study was to examine the influence of RLX and estrogen (E2) on the cervical tissue of the common marmoset monkey. Two experimental designs were used: 1)in vivoanalysis of the intracervical diameter under locally applied RLX and 2) ovariectomized (ov) marmosets were treated systemically with either recombinant human (rh) RLX, E2 or rhRLX+E2 to examine their action on the cervix.In vivo-locally applied rhRLX induced a distinct and significant widening of the cervix (before: 4.8±1.1 mm versus after: 5.7±0.9 mm in diameter;P<0.030, MV±s.e.m.). This widening effect was most pronounced in animals without previous pregnancies.In vitroinvestigation of cervical tissue showed significantly increased wet weights after all three hormone treatments (E2: 0.27±0.07 g, RLX: 0.25±0.04 g, E2+RLX: 0.30±0.11 g; allP<0.05; MV±s.e.m.) versus controls (0.10±0.04 g). Furthermore, morphological changes such as loosening of the connective tissue structure and decline in collagen content, an increase in the number of eosinophils, increased the expression of matrix metalloproteinases (MMP1) and MMP2, as well as gene and protein expression of the RLX receptor RXFP1 could be detected in the cervical tissue after all hormone treatments, compared with controls. In summary, RLX has a potent widening effect on the cervix of the common marmoset monkey. Although E2 is not required for this RLX effect, a combined application of E2 and RLX induced the most prominent cervical ripening.


2013 ◽  
Vol 451 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Jackwee Lim ◽  
Sheng Yao ◽  
Martin Graf ◽  
Christoph Winkler ◽  
Daiwen Yang

Midkine is a heparin-binding di-domain growth factor, implicated in many biological processes as diverse as angiogenesis, neurogenesis and tumorigenesis. Elevated midkine levels reflect poor prognosis for many carcinomas, yet the molecular and cellular mechanisms orchestrating its activity remain unclear. At the present time, the individual structures of isolated half domains of human midkine are known and its functionally active C-terminal half domain remains a popular therapeutic target. In the present study, we determined the structure of full-length zebrafish midkine and show that it interacts with fondaparinux (a synthetic highly sulfated pentasaccharide) and natural heparin through a previously uncharacterized, but highly conserved, hinge region. Mutating six consecutive residues in the conserved hinge to glycine strongly abates heparin binding and midkine embryogenic activity. In contrast with previous in vitro studies, we found that the isolated C-terminal half domain is not active in vivo in embryos. Instead, we have demonstrated that the N-terminal half domain is needed to enhance heparin binding and mediate midkine embryogenic activity surprisingly in both heparin-dependent and -independent manners. Our findings provide new insights into the structural features of full-length midkine relevant for embryogenesis, and unravel additional therapeutic routes targeting the N-terminal half domain and conserved hinge.


Sign in / Sign up

Export Citation Format

Share Document