scholarly journals PhiBoost- A novel phishing detection model Using Adaptive Boosting approach

Ammar Odeh ◽  
Ismail Keshta

Phishing attacks have risen by 209% in the last 10 years according to the Anti Phishing Working Group (APWG) statistics [19]. Machine learning is commonly used to detect phishing attacks. Researchers have traditionally judged phishing detection models with either accuracy or F1-scores, however in this paper we argue that a single metric alone will never correlate to a successful deployment of machine learning phishing detection model. This is because every machine learning model will have an inherent trade-off between it’s False Positive Rate (FPR) and False Negative Rate (FNR). Tuning the trade-off is important since a higher or lower FPR/FNR will impact the user acceptance rate of any deployment of a phishing detection model. When models have high FPR, they tend to block users from accessing legitimate webpages, whereas a model with a high FNR will allow the users to inadvertently access phishing webpages. Either one of these extremes may cause a user base to either complain (due to blocked pages) or fall victim to phishing attacks. Depending on the security needs of a deployment (secure vs relaxed setting) phishing detection models should be tuned accordingly. In this paper, we demonstrate two effective techniques to tune the trade-off between FPR and FNR: varying the class distribution of the training data and adjusting the probabilistic prediction threshold. We demonstrate both techniques using a data set of 50,000 phishing and 50,000 legitimate sites to perform all experiments using three common machine learning algorithms for example, Random Forest, Logistic Regression, and Neural Networks. Using our techniques we are able to regulate a model’s FPR/FNR. We observed that among the three algorithms we used, Neural Networks performed best; resulting in an higher F1-score of 0.98 with corresponding FPR/FNR values of 0.0003 and 0.0198 respectively.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Shan Wang ◽  
Sulaiman Khan ◽  
Chuyi Xu ◽  
Shah Nazir ◽  
Abdul Hafeez

With the increase in the number of electronic devices and developments in the communication system, security becomes one of the challenging issues. Users are interacting with each other through different heterogeneous devices such as smart sensors, actuators, and many other devices to process, monitor, and communicate different scenarios of real life. Such communication needs a secure medium through which users can communicate in a secure and reliable way so that their information may not be lost. The proposed study is an endeavor toward the detection of phishing by using random forest and BLSTM classifiers. The experimental results of the proposed study are promising in phishing detection, and the study reflects the applicability of the proposed algorithms in the information security. The experimental results show that the BLSTM-based phishing detection model is prominent in ensuring the network security by generating a recognition rate of 95.47% compared to the conventional RF-based model that generates a recognition rate of 87.53%. This high recognition rate for the BLSTM-based model reflects the applicability of the proposed model for phishing detection.

2020 ◽  
pp. 1-12
Hu Jingchao ◽  
Haiying Zhang

The difficulty in class student state recognition is how to make feature judgments based on student facial expressions and movement state. At present, some intelligent models are not accurate in class student state recognition. In order to improve the model recognition effect, this study builds a two-level state detection framework based on deep learning and HMM feature recognition algorithm, and expands it as a multi-level detection model through a reasonable state classification method. In addition, this study selects continuous HMM or deep learning to reflect the dynamic generation characteristics of fatigue, and designs random human fatigue recognition experiments to complete the collection and preprocessing of EEG data, facial video data, and subjective evaluation data of classroom students. In addition to this, this study discretizes the feature indicators and builds a student state recognition model. Finally, the performance of the algorithm proposed in this paper is analyzed through experiments. The research results show that the algorithm proposed in this paper has certain advantages over the traditional algorithm in the recognition of classroom student state features.

Sign in / Sign up

Export Citation Format

Share Document