scholarly journals WORKFLOW SCHEDULING ACCORDING TO DATA DEPENDENCIES IN COMPUTATIONAL CLOUDS

Author(s):  
Batoul Khazaie ◽  
Hamid Saadatfar
Author(s):  
. Monika ◽  
Pardeep Kumar ◽  
Sanjay Tyagi

In Cloud computing environment QoS i.e. Quality-of-Service and cost is the key element that to be take care of. As, today in the era of big data, the data must be handled properly while satisfying the request. In such case, while handling request of large data or for scientific applications request, flow of information must be sustained. In this paper, a brief introduction of workflow scheduling is given and also a detailed survey of various scheduling algorithms is performed using various parameter.


2009 ◽  
Vol 31 (2) ◽  
pp. 282-290 ◽  
Author(s):  
Ying-Chun YUAN ◽  
Xiao-Ping LI ◽  
Qian WANG ◽  
Yi ZHANG

2011 ◽  
Vol 30 (12) ◽  
pp. 3184-3186
Author(s):  
Ming-quan WANG ◽  
Jiong YU ◽  
Yuan TIAN ◽  
Yun HAN

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 183
Author(s):  
Jose Ricardo Gomez-Rodriguez ◽  
Remberto Sandoval-Arechiga ◽  
Salvador Ibarra-Delgado ◽  
Viktor Ivan Rodriguez-Abdala ◽  
Jose Luis Vazquez-Avila ◽  
...  

Current computing platforms encourage the integration of thousands of processing cores, and their interconnections, into a single chip. Mobile smartphones, IoT, embedded devices, desktops, and data centers use Many-Core Systems-on-Chip (SoCs) to exploit their compute power and parallelism to meet the dynamic workload requirements. Networks-on-Chip (NoCs) lead to scalable connectivity for diverse applications with distinct traffic patterns and data dependencies. However, when the system executes various applications in traditional NoCs—optimized and fixed at synthesis time—the interconnection nonconformity with the different applications’ requirements generates limitations in the performance. In the literature, NoC designs embraced the Software-Defined Networking (SDN) strategy to evolve into an adaptable interconnection solution for future chips. However, the works surveyed implement a partial Software-Defined Network-on-Chip (SDNoC) approach, leaving aside the SDN layered architecture that brings interoperability in conventional networking. This paper explores the SDNoC literature and classifies it regarding the desired SDN features that each work presents. Then, we described the challenges and opportunities detected from the literature survey. Moreover, we explain the motivation for an SDNoC approach, and we expose both SDN and SDNoC concepts and architectures. We observe that works in the literature employed an uncomplete layered SDNoC approach. This fact creates various fertile areas in the SDNoC architecture where researchers may contribute to Many-Core SoCs designs.


Sign in / Sign up

Export Citation Format

Share Document