scholarly journals Variation of the Spiking Dynamics of a Hodgkin-Huxley Neuron with an Electrical Autaptic Connection Under Ion Channel Blocking

Author(s):  
Rukiye Uzun ◽  
Mahmut Ozer

In this paper, we investigate how the blockage of potassium and sodium ion channels embedded in membranes affects the spiking dynamics of a Hodgkin-Huxley neuron model owing autaptic connection. We consider an electrical autapse expressed by its coupling strength and delay time. It is found that the spiking behavior of the neuron becomes more ordered with the increment of autaptic conductance regardless of the ion channel block level. Furthermore, it is obtained that the blockage of potassium and sodium ion channels influences differently to the spiking regularity of the neuron. Potassium ion channel blockage promotes regularity, whereas sodium ion channel blockage destroys.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1716
Author(s):  
Kun Tong ◽  
Ruotian Zhang ◽  
Fengzhi Ren ◽  
Tao Zhang ◽  
Junlin He ◽  
...  

Novel α-aminoamide derivatives containing different benzoheterocyclics moiety were synthesized and evaluated as voltage-gated sodium ion channels blocks the treatment of pain. Compounds 6a, 6e, and 6f containing the benzofuran group displayed more potent in vivo analgesic activity than ralfinamide in both the formalin test and the writhing assay. Interestingly, they also exhibited potent in vitro anti-Nav1.7 and anti-Nav1.8 activity in the patch-clamp electrophysiology assay. Therefore, compounds 6a, 6e, and 6f, which have inhibitory potency for two pain-related Nav targets, could serve as new leads for the development of analgesic medicines.


Author(s):  
Patricia S. Langan ◽  
Venu Gopal Vandavasi ◽  
Brendan Sullivan ◽  
Joel Harp ◽  
Kevin Weiss ◽  
...  

The mechanism by which potassium ions are transported through ion channels is currently being investigated by several groups using many different techniques. Clarification of the location of water molecules during transport is central to understanding how these integral membrane proteins function. Neutrons have a unique sensitivity to both hydrogen and potassium, rendering neutron crystallography capable of distinguishing waters from K+ ions. Here, the collection of a complete neutron data set from a potassium ion channel to a resolution of 3.55 Å using the Macromolecular Neutron Diffractometer (MaNDi) is reported. A room-temperature X-ray data set was also collected from the same crystal to a resolution of 2.50 Å. Upon further refinement, these results will help to further clarify the ion/water population within the selectivity filter of potassium ion channels.


2011 ◽  
Vol 17 (43) ◽  
pp. 12144-12152 ◽  
Author(s):  
Ryoko Shinohara ◽  
Takafumi Akimoto ◽  
Osamu Iwamoto ◽  
Takatsugu Hirokawa ◽  
Mari Yotsu-Yamashita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document