On the almost everywhere convergence of multiple Fourier series of square summable functions

2020 ◽  
Vol 97 (3-4) ◽  
pp. 313-320
Author(s):  
Ushangi Goginava ◽  
Giorgi Oniani
2019 ◽  
Vol 489 (1) ◽  
pp. 7-10
Author(s):  
R. R. Ashurov

In this paper the generalized localization principle for the spherical partial sums of the multiple Fourier series in the L2-class is proved, that is, if f L2 (ТN) and f = 0 on an open set ТN then it is shown that the spherical partial sums of this function converge to zero almost - ​everywhere on . It has been previously known that the generalized localization is not valid in Lp (TN) when 1 p 2. Thus the problem of generalized localization for the spherical partial sums is completely solved in Lp (TN), p 1: if p 2 then we have the generalized localization and if p 2, then the generalized localization fails.


Sign in / Sign up

Export Citation Format

Share Document