Mechanisms of polymer retention in porous media

Author(s):  
E.F. Veliyev ◽  

Polymer flooding is one of the main enhanced oil recovery methods that have been actively used since the late 1960s. However, despite the significant gained experience of both laboratory and field research, this technology still continues to develop from year to year, revealing more and more new factors and challenges that are necessary aspects for successful implementation. Estimation of retained polymer amount by the porous medium is one of the key factors. The article discusses the main mechanisms and factors affecting retention process, as well as methods for determining the amount of retained polymer when flooding the solution through porous medium in laboratory conditions.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2751 ◽  
Author(s):  
Sameer Al-Hajri ◽  
Syed Mahmood ◽  
Hesham Abdulelah ◽  
Saeed Akbari

Polymer flooding is an important enhanced oil recovery technology introduced in field projects since the late 1960s. The key to a successful polymer flood project depends upon proper estimation of polymer retention. The aims of this paper are twofold. First, to show the mechanism of polymer flooding and how this mechanism is affected by polymer retention. Based on the literature, the mobility ratio significantly increases as a result of the interactions between the injected polymer molecules and the reservoir rock. Secondly, to provide a better understanding of the polymer retention, we discussed polymer retention types, mechanisms, factors promoting or inhibiting polymer retention, methods and modeling techniques used for estimating polymer retention.


Author(s):  
Calvin Lumban Gaol ◽  
Leonhard Ganzer ◽  
Soujatya Mukherjee ◽  
Hakan Alkan

The presence of microorganisms could alter the porous medium permeability, which is vital for several applications, including aquifer storage and recovery (ASR), enhanced oil recovery (EOR) and underground hydrogen storage.


2015 ◽  
Vol 8 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Junjian Li ◽  
Hanqiao Jiang ◽  
Qun Yu ◽  
Fan Liu ◽  
Hongxia Liu

Polymer flood gains expansive popularity as a promising EOR method in various oilfields worldwide. However, there are still substantial amount of resources underground after polymer application. To further enhance oil recovery, secondary chemicals are sometimes utilized to sweep the remaining hydrocarbons to maintain the consistent development of oilfields. In this paper, a series of experiments are established and conducted to explore the feasibility of surfactant/ polymer flooding applied to a polymer flooded reservoir, and also the influence of polymer retention in porous media to enhance the oil recovery performance of subsequent chemical drive. The data of the experiments suggest that surfactant/polymer flooding owns a very good potential as a subsequent EOR technique, and that polymer retention in pores helps block underground water channels, improving greatly the sweeping efficiency of secondary chemical flood.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3732 ◽  
Author(s):  
Yaohao Guo ◽  
Lei Zhang ◽  
Guangpu Zhu ◽  
Jun Yao ◽  
Hai Sun ◽  
...  

Water flooding is an economic method commonly used in secondary recovery, but a large quantity of crude oil is still trapped in reservoirs after water flooding. A deep understanding of the distribution of residual oil is essential for the subsequent development of water flooding. In this study, a pore-scale model is developed to study the formation process and distribution characteristics of residual oil. The Navier–Stokes equation coupled with a phase field method is employed to describe the flooding process and track the interface of fluids. The results show a significant difference in residual oil distribution at different wetting conditions. The difference is also reflected in the oil recovery and water cut curves. Much more oil is displaced in water-wet porous media than oil-wet porous media after water breakthrough. Furthermore, enhanced oil recovery (EOR) mechanisms of both surfactant and polymer flooding are studied, and the effect of operation times for different EOR methods are analyzed. The surfactant flooding not only improves oil displacement efficiency, but also increases microscale sweep efficiency by reducing the entry pressure of micropores. Polymer weakens the effect of capillary force by increasing the viscous force, which leads to an improvement in sweep efficiency. The injection time of the surfactant has an important impact on the field development due to the formation of predominant pathway, but the EOR effect of polymer flooding does not have a similar correlation with the operation times. Results from this study can provide theoretical guidance for the appropriate design of EOR methods such as the application of surfactant and polymer flooding.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2195
Author(s):  
Lei Ding ◽  
Qianhui Wu ◽  
Lei Zhang ◽  
Dominique Guérillot

Fractional flow theory still serves as a powerful tool for validation of numerical reservoir models, understanding of the mechanisms, and interpretation of transport behavior in porous media during the Chemical-Enhanced Oil Recovery (CEOR) process. With the enrichment of CEOR mechanisms, it is important to revisit the application of fractional flow theory to CEOR at this stage. For surfactant flooding, the effects of surfactant adsorption, surfactant partition, initial oil saturation, interfacial tension, and injection slug size have been systematically investigated. In terms of polymer flooding, the effects of polymer viscosity, initial oil saturation, polymer viscoelasticity, slug size, polymer inaccessible pore volume (IPV), and polymer retention are also reviewed extensively. Finally, the fractional flow theory is applied to surfactant/polymer flooding to evaluate its effectiveness in CEOR. This paper provides insight into the CEOR mechanism and serves as an up-to-date reference for analytical modeling of the surfactant flooding, polymer flooding, and surfactant/polymer flooding CEOR process.


2021 ◽  
Vol 21 (1) ◽  
pp. 124
Author(s):  
Ahmad Tawfiequrahman Yuliansyah ◽  
Bardi Murachman ◽  
Suryo Purwono

The need for energy, especially the petroleum-based one, is steadily increasing along with population growth and technological advancement. Meanwhile, oil exploitation from oil reservoirs using primary and secondary techniques can only obtain about 30%-50 % out of the original oil in place. Enhanced Oil Recovery (EOR) is a method for increasing oil recovery from a reservoir by injecting materials that are not found in the reservoir, such as surfactant, polymer, etc. This research aims to develop a mathematical model representing two-phase flow through porous media in the EOR process. This model was extended from mass balance and fluid flow in porous media equations. The reliability of the model was then validated by water flooding and polymer flooding experiment. A porous media, constituted by a silica sand pack, was saturated with 2 % brine and sequentially flooded with HPAM polymer solution at various concentrations (5,000-15,000 ppm). The volume of the oil coming out from the media at any time intervals was measured. Validation of the model was carried out by optimizing the model parameters to obtain the best curve-fitting on the plot of the percentage of cumulative recovered oil against time. The results showed that the proposed mathematical model was reliable enough to express both water and polymer-flooding processes.


2021 ◽  
Vol 48 (1) ◽  
pp. 169-178
Author(s):  
Xiangguo LU ◽  
Bao CAO ◽  
Kun XIE ◽  
Weijia CAO ◽  
Yigang LIU ◽  
...  

2021 ◽  
Vol 1867 (1) ◽  
pp. 012025
Author(s):  
D V Guzei ◽  
S V Ivanova ◽  
D V Platonov ◽  
A I Pryazhnikov

Sign in / Sign up

Export Citation Format

Share Document