scholarly journals Antibacterial Activities of Cationic Porphyrins and Porphyrin Encapsulated Gold Nanorods on Bacterial Cell Lines

2021 ◽  
Vol 13 (5) ◽  
pp. 1086-1096
Author(s):  
Hlapisi Hlapisi N ◽  
Maliehe Maliehe TS ◽  
Oluwafemi Oluwafemi OS ◽  
Songca Songca SP ◽  
Linganiso Linganiso L ◽  
...  
2018 ◽  
Author(s):  
Richard Nemeth ◽  
Mackenzie Neubert ◽  
Thomas Ni ◽  
Christopher J. Ackerson

In the present work we have identified a glutathione reductase like metalloid reductase (GRLMR) responsible for mediating selenite tolerance in <i>Pseudomonas moravenis</i> stanleyae through the enzymatic generation of Se(0) nanoparticles. This enzyme has an unprecedented substrate specificity for selenodiglutathione (K<sub>m</sub>= 336 μM) over oxidized glutathione (K<sub>m</sub>=8.22 mM). This enzyme was able to induce selenite tolerance in foreign bacterial cell lines by increasing the IC<sub>90</sub> for selenite from 1.9 mM in cell lacking the GRLMR gene to 21.3 mM for cells containing the GRLMR gene. It was later confirmed by STEM and EDS that Se nanoparticles were absent in control cells and present in cells expressing GRLMR. Structural analysis suggests the lack of a sulfur residue in the substrate/product binding pocket may be responsible for this unique substrate specificity.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 486 ◽  
Author(s):  
Elansary ◽  
Szopa ◽  
Kubica ◽  
Ekiert ◽  
Mattar ◽  
...  

Targeted profiling of polyphenols in trees may reveal valuable sources of natural compounds with major applications in pharmacology and disease control. The current study targeted the profiling of polyphenols using HPLC-DAD in Quercus robur, Q. macrocarpa and Q. acutissima bark extracts. Free radical scavenging of each extract was investigated using antioxidant assays. Antimicrobial activities against a wide spectrum of bacteria and fungi were explored, as well as anticancer activities against different cancer cell lines. The HPLC-DAD analyses revealed the availability of several polyphenols in high amounts, including ellagic acid (in Q. robur) and caffeic acid (in Q. macrocarpa) in all three species. The bioactivity assay revealed high antioxidant activity in Q. robur compared to that of the other species, as well as phenolic standards. The three oak bark extracts showed clear antibacterial activities against most bacteria tested, with the highest antibacterial activities in the extracts of Q. robur. In addition, the three extracts showed higher antibacterial activities against Pseudomonas aeruginosa, Micrococcus flavus, and Escherichia coli compared to that of other bacteria. There were strong antifungal activities against some fungi, such as Aspergillus flavus, Penicillium funiculosum, and Penicillium ochrochloron. There were also noticeable anticancer activities against MCF-7, HeLa, Jurkat, and HT-29 cell lines, with the highest anticancer activity in the extracts of Q. robur. This is the first study that reveals not only novel sources of important polyphenols (e.g. ellagic acid) in Q. robur, Q. macrocarpa and Q. acutissima bark but also their anticancer activities against diverse cancer cell lines.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Wenxue Chen ◽  
Lan Zou ◽  
Weijun Chen ◽  
Yueying Hu ◽  
Haiming Chen

The chemical composition and antimicrobial mechanism of action of black pepper chloroform extract (BPCE) were investigated, as well as the potential antibacterial activities of BPCE against Escherichia coli and Staphylococcus aureus. The results showed that 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, [1ar-(1aα,4aα,7β,7a,β,7bα.)]- (8.39%) and 2-methylene-4,8,8-trimethyl-4-vinyl-bicyclo[5.2.0]nonane (6.92%) were identified as the two primary components of BPCE. The release of intracellular transaminases from bacteria after being incubated with BPCE revealed that the bacterial cell walls and membranes were degraded and that protein synthesis was inhibited to some extent. The inhibition of bacterial Na+/K+-ATPase activity upon the addition of BPCE also indicated an enhanced permeability of bacterial cell membranes. Moreover, an analysis of hexokinase and pyruvate kinase activities showed that BPCE affected the metabolic rate of glycolysis and disrupted the normal metabolism of bacteria. This phenomenon was supported by an observed accumulation of lactic acid (LA) in the treated bacterial cells. Overall, our results indicated that BPCE damaged bacterial cell walls and membranes, which was followed by a disruption of bacterial cell respiration.


2018 ◽  
Author(s):  
Richard Nemeth ◽  
Mackenzie Neubert ◽  
Thomas Ni ◽  
Christopher J. Ackerson

In the present work we have identified a glutathione reductase like metalloid reductase (GRLMR) responsible for mediating selenite tolerance in <i>Pseudomonas moravenis</i> stanleyae through the enzymatic generation of Se(0) nanoparticles. This enzyme has an unprecedented substrate specificity for selenodiglutathione (K<sub>m</sub>= 336 μM) over oxidized glutathione (K<sub>m</sub>=8.22 mM). This enzyme was able to induce selenite tolerance in foreign bacterial cell lines by increasing the IC<sub>90</sub> for selenite from 1.9 mM in cell lacking the GRLMR gene to 21.3 mM for cells containing the GRLMR gene. It was later confirmed by STEM and EDS that Se nanoparticles were absent in control cells and present in cells expressing GRLMR. Structural analysis suggests the lack of a sulfur residue in the substrate/product binding pocket may be responsible for this unique substrate specificity.


Author(s):  
Dieudonne Lemuh Njimoh ◽  
Germain Sotoing Taiwe ◽  
Jerome Nyhalah Dinga ◽  
Marcel Moyeh Nyuylam ◽  
Juliette Momesaw Meyam ◽  
...  

To assess the antibacterial and cytotoxic properties of stem-barks of Feretia apodanthera and Erythrophleum ivorense extracts from powdered stem-barks of Feretia apodanthera and Erythrophleum ivorense were prepared following standard techniques of marceration, filtration and evaporation. Antibacterial activity was assayed against five pathogenic bacteria strains by the well-diffusion and broth microdilution methods. Cytotoxicity was measured by acute toxicity test on female albino rats and confirmed by cell viability assay using 3T3 cell lines. Phytochemical analysis was performed following standard techniques. The aqueous/alkaloid extracts of Feretia apodanthera and the ethanol extract of Erythrophleum ivorense were active against the five pathogenic bacteria strains tested (diameter zone of inhibition (DZI) ranging from 5.1 to 17.8mm). The Feretia apodanthera extracts were the most active against Staphylococcus aureus (DZI 17.1-17.8mm). The MIC and MBC of the extracts of both plants ranged from 0.094mg/ml to 48mg/ml and 0.047mg/ml to 48mg/ml respectively. Extracts of Feretia. apodanthera at 5000mg/Kg had no effect on the behavioural properties of rats and no death was observed. Incubation with 3T3 cell lines did not produce any cell toxicity up to 20mM and 5mM respectively for the aqueous extract and the alkaloid fraction. Incubation with higher concentrations produced cell death with IC50 of 39.41 ± 0.95mM and 38.45 ± 1.64mM respectively. Phytochemical analysis revealed the presence of various constituents. The results show for the first time that stem-bark extracts of F. apodanthera and E. ivorense possess antibacterial activities against common human pathogenic bacteria and the low/lack of toxicity as demonstrated with the F. apodanthera extracts justify and confirm their safe ethnomedical uses.


2020 ◽  
Vol 16 (2) ◽  
pp. 142-151
Author(s):  
Zanjam Spandana ◽  
Tadigiri M. Rekha ◽  
Mandava V.B. Rao ◽  
Manojit Pal

Background: The 8-Aminoquinoline (8-AQ) framework has attracted particular attention in the discovery and development of antimalarial and anti-bacterial agents or drugs. However, the clinical uses of 8-AQ based drugs are often associated with toxic side effects such as methemoglobinemia and hemolytic anemia with deficiency in Glucose-6-Phosphate Dehydrogenase (G6PD) Activity. The 4-aryl- 8-amino(acetamido)quinoline derivatives, on the other hand, have shown antiproliferative activities against cancer cell lines. These reports prompted us to assess the antibacterial and cytotoxic activities of a series of compounds based on 5-aryl 8-aminoquinoline amide scaffold. Methods: A series of compounds based on 5-(het)aryl 8-aminoquinoline amide scaffold was synthesized via a one-pot ultrasound-assisted method using a C-5 selective halogenation of quinoline derivatives followed by Pd/C-catalyzed Suzuki-Miyaura coupling with (het)aryl boronic acids. All these compounds were evaluated for their in vitro antibacterial activities against representative Gram-(+) and Gram-(-) strains including Escherichia coli, Pseudomonas aeruginosa, Klebsiella species and Staphylococcus aureus. Three compounds were further tested for cytotoxicities in vitro against breast adenocarcinoma (MCF7) and Hepatocellular Carcinoma (HepG2) along with non-cancerous human embryonic kidney (HEK293) cell lines. Results: All these compounds demonstrated moderate to good antibacterial activities against the four organisms used. In vitro assay results revealed that three compounds showed good activities against Gram-(+) strains and Gram-(-) strains and one was comparable to ciprofloxacin and pefloxacin. These three compounds were further tested for their cytotoxic properties against MCF7 and HepG2 cell lines. One of them showed IC50 value comparable to doxorubicin when tested against HepG2 cell lines. However, none of these compounds showed any significant effects when tested against HEK293 cells indicating their selectivity towards the growth inhibition of cancer cells. Conclusion: A series of compounds based on 5-(het)aryl 8-aminoquinoline amide scaffold was synthesized and evaluated for antibacterial and cytotoxic activities. Several of these compounds showed promising antibacterial and cytotoxic activities when tested in vitro suggesting that the present class of compounds may be of interest for the identification of new and potential antibacterial / cytotoxic agents.


ACS Omega ◽  
2020 ◽  
Vol 5 (50) ◽  
pp. 32744-32752
Author(s):  
Yuxiang Xiao ◽  
Wei Xu ◽  
Yoshihiro Komohara ◽  
Yukio Fujiwara ◽  
Hisaaki Hirose ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ayşe Baran ◽  
Mehmet Fırat Baran ◽  
Cumali Keskin ◽  
Sevgi Irtegun Kandemir ◽  
Mahbuba Valiyeva ◽  
...  

Recycling wastes and providing their use in useful fields attract attention every day. In our study, with the extract prepared from the parts of the Cynara scolymus L. (artichoke) plant that is not suitable for human consumption, silver nanoparticles were easily synthesized in an ec-friendly, energy-free way. Characterization of the obtained nanoparticles was done with a UV-visible spectrophotometer (UV-Vis.), fourier transform infrared spectroscopy (FTIR), X-ray diffraction diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and zeta potential analysis data. In these data, it was determined that AgNPs have a maximum absorbance at 458.8 nm wavelength, a crystal nanosize of 28.78 nm, and a spherical appearance. The zeta potential of (-) 16.9 mV indicates that silver nanoparticles exhibit a stable structure. Particles show antimicrobial effects on pathogenic species at concentrations of 0.03-0.25 μg/ml, and it was determined by using the minimum inhibition concentration (MIC) microdilution method. By examining their cytotoxic effects on U118, CaCo-2, and Skov-3 cancer cell lines and healthy HDF cell lines by the MTT method, concentrations of inhibitive effects on survival were determined.


Sign in / Sign up

Export Citation Format

Share Document