Planting stock performance: Site and RGP effects

1995 ◽  
Vol 71 (6) ◽  
pp. 739-742 ◽  
Author(s):  
David G. Simpson ◽  
Alan Vyse

Douglas-fir [Pseudotsuga menziesii var glauca (Beissn.) Franco], interior spruce [Picea glauca Moench (Voss), Picea engelmannii (Parry) and their naturally occurring hybrids] and lodge-pole pine (Pinus contorta Dougl.) seedlings were planted on several forest sites in south central British Columbia. At planting, root growth potential (number of newly elongated roots longer than 10 mm per seedling) was determined. Trees were assessed for survival and height for at least five years. Survival of Douglas-fir and growth of all three species was affected by planting site, probably reflecting moisture and growing season temperature differences among sites. High (> 70%) survival, but not total height or mean annual relative growth rate was associated with root growth potential levels greater than 10 new roots per seedling in interior spruce and lodgepole pine. Survival and growth of Douglas-fir were not related to root growth potential. Fertilization of interior spruce seedlings at planting decreased survival 18% over seven growing seasons, and did not affect growth of surviving seedlings. Key words: reforestation, root growth potential, seedling quality, Douglas-fir, interior spruce, lodgepole pine, field performance

1990 ◽  
Vol 20 (5) ◽  
pp. 566-572 ◽  
Author(s):  
David G. Simpson

Interior spruce (Piceaglaucaengelmannii complex), lodgepole pine (Pinuscontorta Dougl.), Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), and western hemlock (Tsugaheterophylla (Raf.) Sarg.) were grown from seed for 20 weeks in containers, with 18-h photoperiods. Fortnightly, over a 12-week acclimation period (September 7 – December 1) outdoors at Vernon, B.C., samples were taken for (i) foliage frost hardiness measurement, (ii) poststorage root growth capacity, and (iii) outplanting on forest sites. In all species, frost hardiness and root growth capacity increased with weeks of acclimation. Frost hardiness and root growth capacity were correlated with each other in western hemlock, lodgepole pine, and Douglas-fir, and with field performance (survival or growth) in interior spruce, lodgepole pine, and Douglas-fir.


1994 ◽  
Vol 24 (3) ◽  
pp. 576-586 ◽  
Author(s):  
David G. Simpson ◽  
C.F. Thompson ◽  
Craig D. Sutherland

Root growth potential (RGP) and needle conductance to water vapour (Gn) of container-grown interior spruce (Piceaglauca–(Moench) Voss Piceaengelmannii Parry complex) seedlings that had been subjected to mechanical (dropping), low-temperature (−15 °C), or heat (35 °C) stresses were determined prior to planting on two forest sites. Field performance measured as survival, height, stem diameter, stem volume, and mean stem volume relative growth rate (RGR) was assessed for each of the 4 years following planting. RGP, Gn, and field performance did not differ between mechanically stressed and nonstressed seedlings. Low temperature and heat stresses reduced RGP, Gn, and field performance of some batches of seedlings, indicating that stock lots with different nursery cultural history had substantially different stress resistance. RGP and Gn were correlated with field performance such that for RGP greater than five new roots per seedling, high (>80%) survival and to a lesser extent greater growth occurred, whereas for RGP less than five new roots per seedling, survival and growth were unpredictable. High survival and better growth occurred for stock lots having Gn > 50 mmol•m−2•s−1, while for Gn < 50 mmol•m−2•s−1, survival decreased. Preplanting stress effects on growth were small and due to RGR reductions in the first field season, which are projected to result in a time delay of 1 year or less in trees reaching a height of 150 cm and a stem diameter of 3.5 cm.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 597
Author(s):  
Jacob A. Reely ◽  
Andrew S. Nelson

Environmental conditions and seedling quality interact to produce complex patterns of seedling survival and growth. Root growth potential (RGP) is one metric of seedling quality that can be rapidly measured prior to planting, but the correlation of RGP and seedling performance is not consistent across studies. Site factors including microsite objects that cast shade and competing vegetation can also influence seedling performance. We examined the effects of RGP, presence/absence of a microsite object, and competition cover on the survival and growth of three native conifers to the Inland Northwest, USA, over 5 years. We found that RGP had no effect on the survival or growth of western larch (Larix occidentalis), Douglas fir (Pseudotsuga menziesii var. glauca), and grand fir (Abies grandis) at a mesic north aspect site and a xeric south aspect site. Comparatively, the presence of a microsite increased the odds of survival by 37% for western larch and 158% for grand fir, while the absence of forb cover increased the odds of survival of western larch by 72% and of grand fir by 26%. Douglas fir was less sensitive to microsites and competition. The strong effects of neighborhood conditions around seedlings help inform silvicultural practices to enhance the establishment of western larch and grand fir, including planting seedlings near shading objects and competition control, while these practices may not be as important for Douglas fir.


2010 ◽  
Vol 86 (1) ◽  
pp. 118-129 ◽  
Author(s):  
M J Waterhouse ◽  
E. C. Wallich ◽  
N. M. Daintith ◽  
H. M. Armleder

Mature lodgepole pine (Pinus contorta) forests were harvested using group selection (GS) (0.02-ha openings) and irregular group shelterwood (IGS) (0.05-ha openings) systems to maintain arboreal and terrestrial lichens in the winter range of northern woodland caribou (Rangifer tarandus caribou). Ten years after planting, lodgepole pine showed excellent survival, but were smaller in the partial cut openings compared to the clearcuts. Pine grew less in the Sub-Boreal Pine–Spruce biogeoclimatic subzone (SBPSxc) than in the Montane Spruce subzone (MSxv), and trees were smaller in the GS versus IGS treatment within the MSxv subzone. Interior spruce (Picea glauca × engelmannii) grew best in the MSxv and partial cut treatments, but was significantly affected by summer frost in the clearcuts. In an operational-scale Adaptive Management trial, openings were enlarged to 0.15 ha, and both pine and spruce showed excellent survival, minimal frost damage, and 10-year size similar to clearcut conditions. This study suggests that lodgepole pine and interior spruce can be successfully regenerated in partial cut openings with acceptable growth in gaps of 0.15 ha. Key words: caribou, group selection, interior spruce, irregular group shelterwood, light level, lodgepole pine, Montane Spruce zone, partial harvest, soil moisture, soil temperature, Sub-Boreal Pine Spruce zone, summer frost


1982 ◽  
Vol 12 (4) ◽  
pp. 905-912 ◽  
Author(s):  
Gary A. Ritchie

Carbohydrate reserves and root growth potential (RGP) of 2 + 0 Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) seedlings were monitored through a lifting season and during dark, cold storage. Concentrations of total nonstructural carbohydrate and extractable sugars in root and stem tissues remained relatively constant through winter, while foliar sugars showed a sharp midwinter peak at about 195 mg•g−1 dry weight. RGP was lowest in November and March and peaked in January. During storage at +2 and −1 °C, carbohydrates were depleted in all tissues through respiratory consumption. In contrast, RGP increased during the first 6 months in storage and then fell rapidly. The results do not support the view that changes in RGP are driven by changes in carbohydrate concentrations. Storage may affect frost hardiness and drought resistance through its effect on sugar concentrations.


2014 ◽  
Vol 203 (2) ◽  
pp. 578-591 ◽  
Author(s):  
Sam Yeaman ◽  
Kathryn A. Hodgins ◽  
Haktan Suren ◽  
Kristin A. Nurkowski ◽  
Loren H. Rieseberg ◽  
...  

1981 ◽  
Vol 113 (4) ◽  
pp. 337-340 ◽  
Author(s):  
W. W. Nijholt ◽  
L. H. McMullen ◽  
L. Safranyik

AbstractPine oil, a by-product of sulphate wood pulping, protected pheromone-baited, living Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), lodgepole pine (Pinus contorta Dougl.), and spruce (Picea glauca (Moench) Voss - P. engelmannii Parry hybrids) from attack by Douglas-fir beetle (Dendroctonus pseudotsugae Hopk.), mountain pine beetle (D. ponderosa Hopk.), and spruce beetle (D. rufipennis (Kirby)), respectively. Pine oil also protected surrounding trees and reduced attack incidence on Douglas-fir, lodgepole pine, and spruce within at least a 10 m radius. α-Terpineol, one of the constituents of the pine oil mixture, was less effective.


Sign in / Sign up

Export Citation Format

Share Document