scholarly journals Nickel contamination analysis at cost-effective silver printed paper-based electrodes based on carbon black dimethylglyoxime ink as electrode modifier

Author(s):  
Keagan Pokpas ◽  
Nazeem Jahed ◽  
Petrone Bezuidenhout ◽  
Suzanne Smith ◽  
Kevin Land ◽  
...  

Electrochemical detection of metal cations at paper-based sensors has been suggested as an attractive alternative to current spectroscopic and chromatographic detection techniques due to the ease of fabrication, disposable nature, and low cost. Herein, a novel carbon black (CB), dimethylglyoxime (DMG) ink is designed as an electrode modifier in conjunction with 3-electrode inkjet-printed paper substrates for use in the adsorptive stripping voltammetric electroanalysis of nickel cations in water samples. The developed method provides a novel, low-cost, rapid, and portable adsorptive stripping detection approach towards metal analysis in the absence of the commonly used toxic metallic films. The study demonstrated a novel approach to nickel detection at paper-based sensors and builds on previous work in the field of paper-based metal analysis by limiting the use of toxic metal films. The device sensitivity is improved by increasing the active surface area, electron transfer kinetics, and catalytic effects associated with non-conductive dimethylglyoxime films through CB nanoparticles for the first time and confirmed by electroanalysis. The first use of the CB-DMG ink allows for the selective preconcentration of analyte at the electrode surface without the use of toxic Mercury or Bismuth metallic films. Compared to similarly reported paper-based sensors, improved limits of detection (48 µg L-1), selectivity, and intermetallic interferences were achieved. The method was applied to the detection of nickel in water samples well below World Health Organization (WHO) standards.

Author(s):  
MARCO ANTONIO FERREIRA GOMES ◽  
CLÁUDIO A. SPADOTTO ◽  
VERA LÚCIA LANCHOTTE

Pretendeu-se mostrar que o herbicida Tebuthiuron, selecionado entre outros usados na cultura de cana-de-açúcar, oferece risco de contaminação para a água subterrânea em função de suas características físico-químicas, principalmente, quando aplicado em áreas de recarga direta de aqüíferos consideradas de alta vulnerabilidade natural. Assim, efetuou-se monitoramento do referido herbicida no período compreendido entre 1995 e 1999, coletando amostras de água de poço semi-artesiano, com 53 metros de profundidade, localizado na microbacia do Córrego Espraiado, município de Ribeirão Preto/SP, Brasil, no qual tem sido freqüente o uso do produto em questão. Para efeito de testemunha da amostra de água foi considerado um poço semi-artesiano de profundidade semelhante, localizado cerca de três quilômetros de distância do poço objeto de monitoramento. Os resultados obtidos mostraram que o Tebuthiuron está presente em todas as amostras analisadas, embora em concentrações abaixo do nível crítico para padrão de potabilidade, conforme os limites mais restritivos estabelecidos pela Organização Mundial de Saúde (para os pesticidas em uso é de 0,1 µg/L por pesticida e de 0,5 µg/L para pesticidas totais). Mesmo com os baixos valores de concentração encontrados fica evidente que o Tebuthiuron está atingindo a água subterrânea podendo aumentar sua concentração pela existência de condições ambientais favoráveis à preservação da molécula em profundidade (tais como baixa temperatura, baixa atividade biológica e ausência de luz). Caso o nível crítico seja atingido, o risco de contaminação poderia ser minimizado por meio da substituição do Tebuthiuron por outro herbicida com menor mobilidade no perfil do solo. OCCURRENCE OF THE HERBICIDE TEBUTHIURON IN GROUNDWATER OF ESPRAIADO CATCHMENT RIBEIRAO PRETO - SP (BRASIL) Abstract The herbicide Tebuthiuron, selected among others utilized in sugar-cane crop, shows groundwater contamination risk due to its physicochemical properties, mainly, when applied in direct recharge areas of aquifers considered of high natural vulnerability. In this context, the monitoring of this herbicide in the period of 1995 through 1999 was realized, by collecting water samples of aquifers 53 m depht, located in Espraiado catchment, Ribeirao Preto/SP (Brazil) in which the product has been extensively used. For blank assays it was utilized water samples collected similarly 3 Km away from the monitoring area. The results obtained showed that Tebuthiuron is present in all analyzed samples. Although in lower concentrations of the critical level for drinkable water, following the restrictive limits established by World Health Organization (for pesticides in use is 0,1 µg/L by pesticide and of 0,5 µg/L for total pesticides). Even if the low concentration values found it is evident that the Tebuthiuron affects the groundwater, and could enhance its concentration by favorable ambiental conditions for molecule preservation in deep water (such as low temperature, low biological activity and absence of light). The present scenary reflects contamination risk in case of reaching the critical level, which could only be minimized by the substitution of Thebuthiuron for other herbicide with lower soil mobility.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Nathan Tintle ◽  
Kristin Van De Griend ◽  
Rachel Ulrich ◽  
Randall D. Wade ◽  
Tena M. Baar ◽  
...  

Abstract Background Lack of sustainable access to clean drinking water continues to be an issue of paramount global importance, leading to millions of preventable deaths annually. Best practices for providing sustainable access to clean drinking water, however, remain unclear. Widespread installation of low-cost, in-home, point of use water filtration systems is a promising strategy. Methods We conducted a prospective, randomized, controlled trial whereby 16 villages were selected and randomly assigned to one of four treatment arms based on the installation location of Sawyer® PointONE™ filters (filter in both home and school; filter in home only; filter in school only; control group). Water samples and self-reported information on diarrhea were collected at multiple times throughout the study. Results Self-reported household prevalence of diarrhea decreased from 25.6 to 9.76% from installation to follow-up (at least 7 days, and up to 200 days post-filter installation). These declines were also observed in diarrhea with economic or educational consequences (diarrhea which led to medical treatment and/or missing school or work) with baseline prevalence of 9.64% declining to 1.57%. Decreases in diarrhea prevalence were observed across age groups. There was no evidence of a loss of efficacy of filters up to 200 days post-filter installation. Installation of filters in schools was not associated with decreases in diarrhea prevalence in school-aged children or family members. Unfiltered water samples both at schools and homes contained potential waterborne bacterial pathogens, dissolved heavy metals and metals associated with particulates. All dissolved metals were detected at levels below World Health Organization action guidelines. Conclusions This controlled trial provides strong evidence of the effectiveness of point-of-use, hollow fiber membrane filters at reducing diarrhea from bacterial sources up to 200 days post-installation when installed in homes. No statistically significant reduction in diarrhea was found when filters were installed in schools. Further research is needed in order to explore filter efficacy and utilization after 200 days post-installation. Trial registration ClinicalTrials.gov, NCT03972618. Registered 3 June 2019—retrospectively registered.


Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Borja Sanz ◽  
Ane Albillos Sanchez ◽  
Bonnie Tangey ◽  
Kerry Gilmore ◽  
Zhilian Yue ◽  
...  

Collagen is a major component of the extracellular matrix (ECM) that modulates cell adhesion, growth, and migration, and has been utilised in tissue engineering applications. However, the common terrestrial sources of collagen carry the risk of zoonotic disease transmission and there are religious barriers to the use of bovine and porcine products in many cultures. Marine based collagens offer an attractive alternative and have so far been under-utilized for use as biomaterials for tissue engineering. Marine collagen can be extracted from fish waste products, therefore industry by-products offer an economical and environmentally sustainable source of collagen. In a handful of studies, marine collagen has successfully been methacrylated to form collagen methacrylate (ColMA). Our work included the extraction, characterization and methacrylation of Red Snapper collagen, optimisation of conditions for neural cell seeding and encapsulation using the unmodified collagen, thermally cross-linked, and the methacrylated collagen with UV-induced cross-linking. Finally, the 3D co-axial printing of neural and skeletal muscle cell cultures as a model for neuromuscular junction (NMJ) formation was investigated. Overall, the results of this study show great potential for a novel NMJ in vitro 3D bioprinted model that, with further development, could provide a low-cost, customizable, scalable and quick-to-print platform for drug screening and to study neuromuscular junction physiology and pathogenesis.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Saheed Adekunle Ganiyu ◽  
Abimbola Temitope Oyadeyi ◽  
Azeem Adedeji Adeyemi

AbstractThis study has been conducted to appraise the concentrations of selected heavy metals and total dissolved solids (TDSs) in the drinking water from shallow wells in parts of Ibadan metropolis, southwest Nigeria. Fifteen (15) water samples were collected from three representative residential locations [traditional core area (TCA), peri-urban area (PUA), and urban area (UA)] for geochemical analysis. Heavy metals and TDS were analyzed with the aid of atomic absorption spectrophotometer and calibrated meter, respectively. The mean concentration (mg/L) of Zn, Pb Mn, Fe, and Cd has been 3.930, 0.658, 0.0304, 1.698, and 0.501, respectively, and as a consequence, the order of abundance of studied metals was Zn > Fe > Pb > Cd > Mn. Concentrations of Zn, Fe, Pb, and Cd were higher than recommended standards in 60%, 86.7%, 100%, and 100% of groundwater samples, respectively. However, at all points tested, the mean concentrations of Mn and TDS in water samples lie within the safe limits set by World Health Organization. The evaluation of geoaccumulation index (Igeo), enrichment factor (EF), and contamination factor suggests that representative water samples were low-to-moderate contamination. The potential ecological risk index advocates low-to-moderate ecological risk in TCA and PUA, while it demonstrated exclusive “moderate” risk in UA. Further, the range of pollution load index (PLI) (0.55–1.32) in both TCA and PUA shows nil-to-moderate pollution status, while PLI values > 1 in UA indicate moderate contaminated state. The degree of contamination in groundwater showed the following trends: UA > TCA > PUA in the study area. Moreover, the results of EF and quantification of contamination of analyzed metals in water samples indicate geogenic and anthropogenic inputs. The contribution of studied metals to the incidence of non-cancer risk via oral intake within the residential sites follows the order: cadmium > lead > zinc > iron > manganese. The hazard index as a result of ingested heavy metals for the three population classes surpasses the acceptable range in the order of infant < child < adult. Cadmium and lead made considerable impact to the estimation of cancer risk in the study area for the three human population categories. Factor analysis extracted only one component that explained 94.64% of the entire variance, while cluster analysis identified three distinct groups based on similar water quality characteristics. Based on the findings of the study, awareness programs toward protecting the shallow groundwater sources should be launched, encouraged, and sustained. Moreover, the study suggests better hygienic practices and pre-treatment of contaminated water before consumption.


2019 ◽  
Vol 71 ◽  
pp. 177-179
Author(s):  
Melissa Solano Barquero ◽  
Eric Morales Mora ◽  
Luz Chacón Jiménez ◽  
Erick Cordero Jara ◽  
Liliana Reyes Lizano ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3495
Author(s):  
Shabir Hussain ◽  
Yang Yu ◽  
Muhammad Ayoub ◽  
Akmal Khan ◽  
Rukhshanda Rehman ◽  
...  

The spread of COVID-19 has been taken on pandemic magnitudes and has already spread over 200 countries in a few months. In this time of emergency of COVID-19, especially when there is still a need to follow the precautions and developed vaccines are not available to all the developing countries in the first phase of vaccine distribution, the virus is spreading rapidly through direct and indirect contacts. The World Health Organization (WHO) provides the standard recommendations on preventing the spread of COVID-19 and the importance of face masks for protection from the virus. The excessive use of manual disinfection systems has also become a source of infection. That is why this research aims to design and develop a low-cost, rapid, scalable, and effective virus spread control and screening system to minimize the chances and risk of spread of COVID-19. We proposed an IoT-based Smart Screening and Disinfection Walkthrough Gate (SSDWG) for all public places entrance. The SSDWG is designed to do rapid screening, including temperature measuring using a contact-free sensor and storing the record of the suspected individual for further control and monitoring. Our proposed IoT-based screening system also implemented real-time deep learning models for face mask detection and classification. This module classified individuals who wear the face mask properly, improperly, and without a face mask using VGG-16, MobileNetV2, Inception v3, ResNet-50, and CNN using a transfer learning approach. We achieved the highest accuracy of 99.81% while using VGG-16 and the second highest accuracy of 99.6% using MobileNetV2 in the mask detection and classification module. We also implemented classification to classify the types of face masks worn by the individuals, either N-95 or surgical masks. We also compared the results of our proposed system with state-of-the-art methods, and we highly suggested that our system could be used to prevent the spread of local transmission and reduce the chances of human carriers of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document