scholarly journals EXPERIMENTAL STUDY ON ANTIWEAR PROPERTIES FOR BLENDS OF JET FUEL WITH BIO-COMPONENTS DERIVED FROM RAPESEED OIL

2016 ◽  
Vol 245 (4) ◽  
pp. 352-365
Author(s):  
Sergii Boichenko ◽  
Kazimierz Lejda ◽  
Anna Iakovlieva ◽  
Hubert Kuszewski ◽  
Oksana Vovk

Antiwear properties of jet fuel, two kinds of biocomponents derived from rapeseed oil and their mixtures were investigated experimentally. Antiwear properties were estimated by the value of the scuffing load and the limiting load of scuffing applied to the friction pair working in a fuel medium. Biocomponents, mainly rapeseed oil FAME and rapeseed oil FAME modified via vacuum distillation were used during the study. It is found that lubricity of biocomponents is significantly higher comparing to conventional jet fuel. It is explained by the chemical composition of FAME: highly polarity of molecules stipulate their good adsorption at the surface of friction pair. High viscosity of biocomponents due to chemical structure positively influence on their lubricity. Adding biocomponents into jet fuel results in strengthening boundary film and thus improves antiwear properties of fuel blends. It is determined that FAME modified via vacuum distillation possess better lubricating ability comparing to standard FAME derived from rapeseed oil. Correlation between viscosity and lubricity of fuel is shown

Tribologia ◽  
2016 ◽  
Vol 266 (2) ◽  
pp. 61-72
Author(s):  
Rafał KOZDRACH

The paper discusses the influence of vegetable oil basis on lubricating properties of their selected compositions. Four vegetable oils were used for production of lubricating greases: rapeseed, sunflower, soybean, and castor, all thickened with modified silica of Aerosil® type. The tribological properties of lubricating greases based on vegetable oils were investigated. On their basis, the most beneficial compositions were selected. The tribological properties of greases were estimated via measurements of limiting load of wear (Goz/40), welding load (Pz), scuffing load (Pt), limiting load of scuffing (Poz), and the limiting pressure of seizure (Poz). Based on the obtained results, it may be concluded that the best antiwear properties were shown by the lubricating compositions based on rapeseed oil, whereas the best antiscuffing properties have compositions using castor oil as a disperse phase.


2015 ◽  
Vol 162 (3) ◽  
pp. 13-18
Author(s):  
Gvidonas Labeckas ◽  
Irena Kanapkienė

The article presents experimental test results of a DI single-cylinder, air-cooled diesel engine FL 511 operating with the normal (class 2) diesel fuel (DF), rapeseed oil (RO) and its 10%, 20% and 30% (v/v) blends with aviation-turbine fuel JP-8 (NATO code F-34). The purpose of the research was to analyse the effects of using various rapeseed oil and jet fuel RO90, RO80 and RO70 blends on brake specific fuel consumption, brake thermal efficiency, emissions and smoke of the exhaust. The test results of engine operation with various rapeseed oil and jet fuel blends compared with the respective parameters obtained when operating with neat rapeseed oil and those a straight diesel develops at full (100%) engine load and maximum brake torque speed of 2000 rpm. The research results showed that jet fuel added to rapeseed oil allows to decrease the value of kinematic viscosity making such blends suitable for the diesel engines. Using of rapeseed oil and jet fuel blends proved themselves as an effective measure to maintain fuel-efficient performance of a DI diesel engine. The brake specific fuel consumption decreased by about 6.1% (313.4 g/kW·h) and brake thermal efficiency increase by nearly 1.0% (0.296) compared with the respective values a fully (100%) loaded engine fuelled with pure RO at the same test conditions. The maximum NOx emission was up to 13.7% higher, but the CO emissions and smoke opacity of the exhaust 50.0% and 3.4% lower, respectively, for the engine powered with biofuel blend RO70 compared with those values produced by the combustion of neat rapeseed oil at full (100%) engine load and speed of 2000 rpm.


2016 ◽  
Vol 10 (4) ◽  
pp. 485-492 ◽  
Author(s):  
Anna Iakovlieva ◽  
◽  
Oksana Vovk ◽  
Sergii Boichenko ◽  
Kazimierz Lejda ◽  
...  

The work is devoted to the development of alternative jet fuel blended with rapeseed oil-derived biocomponents and study of their physical-chemical properties. The modification of conventional jet fuel by rapeseed oil esters was chosen for this work among the variety of technologies for alternative jet fuels development. The main characteristics of conventional jet fuel and three kinds of biocomponents were determined and compared to the standards requirements to jet fuel of Jet A-1 grade. The most important or identifying physical-chemical properties of jet fuels were determined for the scope of this study. Among them are: density, viscosity, fractional composition, freezing point and net heat of combustion. The influence of rapeseed oil-derived biocomponents on the mentioned above characteristics of blended jet fuels was studied and explained.


2010 ◽  
Vol 67 (5) ◽  
pp. 510-516 ◽  
Author(s):  
Tone Godeša ◽  
Viktor Jejčič ◽  
Tomaž Poje

One of the most unfavourable characteristics of crude vegetable oil when used as the fuel is the high viscosity. To improve this weakness, oil can be blended with mineral diesel or biodiesel fuels. This study was designed to evaluate how the use of mineral diesel or biodiesel blend with cold pressed rapeseed (Brassica napus) oil affects the engine power, torque and fuel consumption. A tractor equipped with direct injection, water cooling system and three-cylinder diesel engine was used for the experiment. Fuels used were standard diesel fuel (diesel), rapeseed oil methyl ester - biodiesel (B100) and their mixtures with 10, 30 and 50 vol. % of cold pressed rapeseed oil (RO). Increased portion of RO in diesel fuel blends had almost no effect on the torque measured on the tractor PTO shaft; it however decreased the maximal power. Fuel blends with B100 and rising RO content (up to 50%) gave a positive correlation with maximal torque and power. By increasing the portion of RO from 0 to 50%, the minimal specific fuel consumption increased by 6.65% with diesel and decreased by 2.98% with B100 based fuel.


2017 ◽  
Vol 187 ◽  
pp. 363-370 ◽  
Author(s):  
Anna Iakovlieva ◽  
Segrii Boichenko ◽  
Kazimierz Lejda ◽  
Oksana Vovk ◽  
Iryna Shkilniuk

2015 ◽  
Vol 5 (8(77)) ◽  
pp. 20 ◽  
Author(s):  
Anna Iakovlieva ◽  
Sergii Boichenko ◽  
Oksana Vovk ◽  
Lejda Kazimierz ◽  
Hubert Kuszewski ◽  
...  

Author(s):  
I.L. Trofimov ◽  
M.M. Svirid ◽  
S.V. Boichenko ◽  
A.V. Yakovlieva ◽  
S.V. Ternovenko ◽  
...  

Presented studies are related to the spheres of aviation and machine-building. Anti-wear properties of conventional jet fuel, fatty acids ethyl esters bio-additives derived from camelina oil and their blends were investigated experimentally. It was found that lubricity of bio-additive is significantly higher comparing to conventional oil-derived jet fuel. It was found that addition of bio-additive into the composition of jet fuel leads to strengthening of boundary film, decreasing of friction coefficient and improvement of anti-wear properties of fuel blends. The mechanism of fatty acids esters influence on improvement of anti-wear properties of jet fuel was substantiated. It was shown that camelina oil fatty acids esters positively influence on lubricating ability of oil-derived jet fuels and may be used in order to improve anti-wear properties of conventional jet fuels. Ref. 15, Fig. 2, Tabl. 1.


2016 ◽  
Vol 113 (10) ◽  
pp. 2079-2087 ◽  
Author(s):  
Zachary C. Baer ◽  
Sebastian Bormann ◽  
Sanil Sreekumar ◽  
Adam Grippo ◽  
F. Dean Toste ◽  
...  
Keyword(s):  
Jet Fuel ◽  

2015 ◽  
Vol 813-814 ◽  
pp. 695-699
Author(s):  
S. Arumugam ◽  
G. Sriram ◽  
A. Hemanth Sai Kumar Chowdary ◽  
Janga Subramanya Sai

The rising demand for environmentally acceptable lubricant has led researchers to look to vegetable oils as an alternative to petroleum based lubricants. Vegetable oils have radically distinctive properties owing to their unique chemical structure which have greater ability to lubricate and have higher biodegradability. In spite of advantages, they are limited to inadequate thermo-oxidative stability and poor low-temperature properties which hinder their utilization. In the present study in order to produce a bio lubricant with good thermo-oxidative stability, rapeseed oil was subjected to two different chemical modification techniques viz., epoxidation method and successive transesterification method. The thermo-oxidative stability of formulated oil was analysed using Thermo Gravimetric Analysis (TGA). TGA analysis divulges that the thermo-oxidative stability of rapeseed oil was greatly improved with the epoxidation method in comparison with the successive transesterification method.


Fuel ◽  
2019 ◽  
Vol 237 ◽  
pp. 648-657 ◽  
Author(s):  
Xin Xue ◽  
Xin Hui ◽  
Peter Vannorsdall ◽  
Pradeep Singh ◽  
Chih-Jen Sung
Keyword(s):  
Jet Fuel ◽  

Sign in / Sign up

Export Citation Format

Share Document