scholarly journals Site Test Performance and Numerical Study of Vertical Axis Hydrokinetic Turbine Straight Blade Cascaded (VAHT–SBC)

2021 ◽  
Vol 53 (1) ◽  
pp. 210102
Author(s):  
Ridho Hantoro ◽  
Sarwono Sarwono ◽  
Fernando Parsaulian Panjaitan ◽  
Erna Septyaningrum ◽  
Nuril Hidayati
2019 ◽  
Vol 13 (3) ◽  
pp. 5665-5688
Author(s):  
E. Septyaningrum ◽  
R. Hantoro ◽  
I. K. A. P. Utama ◽  
J. Prananda ◽  
G. Nugroho ◽  
...  

Due to its high energy concentration, hydrokinetic energy from tidal and rivers flow provides great expectation. One of the effective ways to meet the energy production target is to reduce the installation and maintenance effort arranging turbines in such configuration, known as hydrokinetic turbine array. The performance of array configuration is affected by turbine position and rotational direction. This research provides a comprehensive analysis of the effect of turbine rotational direction and position on the array performance. The experimental study and URANS simulation were carried out to gain deeper information. This previous study proposed 3 side-by-side configurations, i.e. Co-rotating” (Co), “counter-rotating-in” (CtI) and “counter-rotating-out” (CtO) and the current study proposed 2 multi-row configurations, i.e. 3T-A and 3T-B. The comprehensive information is provided. Both experimental and numerical study confirmed that the velocity superposition in the interaction zone gives the constructive effect on turbine performance. All site-by-site configurations is able to enhance farm effectiveness. Co configuration is recommended to install in the resource having unpredictable flow direction. However, the CtI is for canal or river since it has better performance. The study for multi-row configuration shows that the downstream turbine has performance decrement due to the bad effect of the upstream turbine wake.


Author(s):  
N. C. Uzarraga-Rodriguez ◽  
A. Gallegos-Muñoz ◽  
Maria T. Parra-Santos ◽  
Juan M. Belman-Flores

A numerical analysis of a three-bladed straight vertical axis wind turbine with NACA0015 airfoils-shaped is presented. The effect generated on the moment coefficient and power coefficient of the wind turbine rotor by the twist angle variation at the chord ends was analyzed. The configurations included the variation of blade twist angle of 15° and 30° located at 70%, 80% and 90% of chord length from leading end of the straight blade. The numerical study was developed in a commercial Computational Fluid Dynamics (CFD) using FLUENT®. This code allows to solve the Reynolds averaged Navier-Stokes equations and the transport equations of the turbulence quantities. The results show the aerodynamic performance for each configuration of the blade twist angle in the wind turbine, and are compared with data obtained from straight blade without twist angle. The wind turbine performance decrease about 67% as the blade twist angle increases, due to an increment in the drag force causing a negative moment against the rotation of vertical axis wind turbine. Also, the surface pressure distribution in a VAWT’s is presented.


2015 ◽  
Vol 57 ◽  
pp. 144-158 ◽  
Author(s):  
K.M. Almohammadi ◽  
D.B. Ingham ◽  
L. Ma ◽  
M. Pourkashanian

2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


Sign in / Sign up

Export Citation Format

Share Document