Performance Evaluation of USTEC Product for Single-Frequency Precise Point Positioning

GEOMATICA ◽  
2013 ◽  
Vol 67 (4) ◽  
pp. 253-257 ◽  
Author(s):  
Mahmoud Abd El-Rahman ◽  
Ahmed El-Rabbany

Geodetic-grade dual-frequency GPS receivers are typically used for precise point positioning (PPP). Unfortunately, these receiver systems are expensive and may not provide a cost-effective solution in many instances. The use of low-cost single-frequency GPS receivers, on the other hand, are limited by the effect of ionospheric delay. A number of mitigation techniques have been proposed to account for the effect of ionospheric delay for single-frequency GPS users. Unfortunately, however, those mitigation techniques are not suitable for PPP. More recently, the U.S. Total Electron Content (USTEC) product has been developed by the National Oceanic and Atmospheric Administration (NOAA), which describes the ionospheric total electron content in high resolution over most of North America. This paper investigates the performance of USTEC and studies its effect on single-frequency PPP solution. A performance comparison with two widely-used ionospheric mitigation models is also presented.

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1138 ◽  
Author(s):  
Liang Zhang ◽  
Yibin Yao ◽  
Wenjie Peng ◽  
Lulu Shan ◽  
Yulin He ◽  
...  

The prevalence of real-time, low-cost, single-frequency, decimeter-level positioning has increased with the development of global navigation satellite systems (GNSSs). Ionospheric delay accounts for most errors in real-time single-frequency GNSS positioning. To eliminate ionospheric interference in real-time single-frequency precise point positioning (RT-SF-PPP), global ionospheric vertical total electron content (VTEC) product is designed in the next stage of the International GNSS Service (IGS) real-time service (RTS). In this study, real-time generation of a global ionospheric map (GIM) based on IGS RTS is proposed and assessed. There are three crucial steps in the process of generating a real-time global ionospheric map (RTGIM): estimating station differential code bias (DCB) using the precise point positioning (PPP) method, deriving slant total electron content (STEC) from PPP with raw observations, and modeling global vertical total electron content (VTEC). Experiments were carried out to validate the algorithm’s effectiveness. First, one month’s data from 16 globally distributed IGS stations were used to validate the performance of DCB estimation with the PPP method. Second, 30 IGS stations were used to verify the accuracy of static PPP with raw observations. Third, the modeling of residuals was assessed in high and quiet ionospheric activity periods. Afterwards, the quality of RTGIM products was assessed from two aspects: (1) comparison with the Center for Orbit Determination in Europe (CODE) global ionospheric map (GIM) products and (2) determination of the performance of RT-SF-PPP with the RTGIM. Experimental results show that DCB estimation using the PPP method can realize an average accuracy of 0.2 ns; static PPP with raw observations can achieve an accuracy of 0.7, 1.2, and 2.1 cm in the north, east, and up components, respectively. The average standard deviations (STDs) of the model residuals are 2.07 and 2.17 TEC units (TECU) for moderate and high ionospheric activity periods. Moreover, the average root-mean-square (RMS) error of RTGIM products is 2.4 TECU for the one-month moderate ionospheric period. Nevertheless, for the high ionospheric period, the RMS is greater than the RMS in the moderate period. A sub-meter-level horizontal accuracy and meter-level vertical accuracy can be achieved when the RTGIM is employed in RT-SF-PPP.


2016 ◽  
Vol 10 (4) ◽  
Author(s):  
Sampad K. Panda ◽  
Shirish S. Gedam

AbstractThe present paper investigates accuracy of single and dual-frequency Global Positioning System (GPS) standard point positioning solutions employing different ionosphere error mitigation techniques. The total electron content (TEC) in the ionosphere is the prominent delay error source in GPS positioning, and its elimination is essential for obtaining a relatively precise positioning solution. The estimated delay error from different ionosphere models and maps, such as Klobuchar model, global ionosphere models, and vertical TEC maps are compared with the locally derived ionosphere error following the ion density and frequency dependence with delay error. Finally, the positional accuracy of the single and dual-frequency GPS point positioning solutions are probed through different ionospheric mitigation methods including exploitation of models, maps, and ionosphere-free linear combinations and removal of higher order ionospheric effects. The results suggest the superiority of global ionosphere maps for single-frequency solution, whereas for the dual-frequency measurement the ionosphere-free linear combination with prior removal of higher-order ionosphere effects from global ionosphere maps and geomagnetic reference fields resulted in improved positioning quality among the chosen mitigation techniques. Conspicuously, the susceptibility of height component to different ionospheric mitigation methods are demonstrated in this study which may assist the users in selecting appropriate technique for precise GPS positioning measurements.


2021 ◽  
Vol 13 (24) ◽  
pp. 5093
Author(s):  
Ke Su ◽  
Shuanggen Jin

Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) enables the estimation the ionospheric vertical total electron content (VTEC) as well as the by-product of the satellite Pseudorange observable-specific signal bias (OSB). The single-frequency PPP models, with the ionosphere-float and ionosphere-free approaches in ionospheric studies, have recently been discussed by the authors. However, the multi-frequency observations can improve the performances of the ionospheric research compared with the single-frequency approaches. This paper presents three dual-frequency PPP approaches using the BeiDou Navigation Satellite System (BDS) B1I/B3I observations to investigate ionospheric activities. Datasets collected from the globally distributed stations are used to evaluate the performance of the ionospheric modeling with the ionospheric single- and multi-layer mapping functions (MFs), respectively. The characteristics of the estimated ionospheric VTEC and BDS satellite pseudorange OSB are both analyzed. The results indicated that the three dual-frequency PPP models could all be applied to the ionospheric studies, among which the dual-frequency ionosphere-float PPP model exhibits the best performance. The three dual-frequency PPP models all possess the capacity for ionospheric applications in the GNSS community.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Baocheng Zhang ◽  
Chuanbao Zhao ◽  
Robert Odolinski ◽  
Teng Liu

AbstractPrecise Point Positioning (PPP), initially developed for the analysis of the Global Positing System (GPS) data from a large geodetic network, gradually becomes an effective tool for positioning, timing, remote sensing of atmospheric water vapor, and monitoring of Earth’s ionospheric Total Electron Content (TEC). The previous studies implicitly assumed that the receiver code biases stay constant over time in formulating the functional model of PPP. In this contribution, it is shown this assumption is not always valid and can lead to the degradation of PPP performance, especially for Slant TEC (STEC) retrieval and timing. For this reason, the PPP functional model is modified by taking into account the time-varying receiver code biases of the two frequencies. It is different from the Modified Carrier-to-Code Leveling (MCCL) method which can only obtain the variations of Receiver Differential Code Biases (RDCBs), i.e., the difference between the two frequencies’ code biases. In the Modified PPP (MPPP) model, the temporal variations of the receiver code biases become estimable and their adverse impacts on PPP parameters, such as ambiguity parameters, receiver clock offsets, and ionospheric delays, are mitigated. This is confirmed by undertaking numerical tests based on the real dual-frequency GPS data from a set of global continuously operating reference stations. The results imply that the variations of receiver code biases exhibit a correlation with the ambient temperature. With the modified functional model, an improvement by 42% to 96% is achieved in the Differences of STEC (DSTEC) compared to the original PPP model with regard to the reference values of those derived from the Geometry-Free (GF) carrier phase observations. The medium and long term (1 × 104 to 1.5 × 104 s) frequency stability of receiver clocks are also significantly improved.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2845
Author(s):  
Janina Boisits ◽  
Marcus Glaner ◽  
Robert Weber

Propagation delays of GNSS signals caused by the ionosphere can range up to several meters in zenith direction and need to be corrected. Geodetic receivers observing at two or more frequencies allow the mitigation of the ionospheric effects by forming linear combinations. However, single frequency users depend on external information. The ionosphere delay model Regiomontan developed at TU Wien is a regional ionospheric delay model providing high accuracy information with a latency of only a few hours. The model is based on dual-frequency phase observations of a regional network operated by EPOSA (Echtzeit Positionierung Austria) and partners. The corrections cover a geographical extent for receiver positions within Austria and are provided in the standardized IONEX format. The performance of Regiomontan as well as its application in Precise Point Positioning (PPP) were tested with our in-house PPP software raPPPid using the so-called uncombined model with ionospheric constraint. Various tests, e.g., analyzing the coordinate convergence behavior or the difference between estimated and modeled ionospheric delay, proving the high level of accuracy provided with Regiomontan. We conclude that Regiomontan performs at a similar level of accuracy as IGS final TEC maps, but with explicitly reduced latency.


2015 ◽  
Vol 55 (2) ◽  
pp. 605-616 ◽  
Author(s):  
I. Rodríguez-Bilbao ◽  
B. Moreno Monge ◽  
G. Rodríguez-Caderot ◽  
M. Herraiz ◽  
S.M. Radicella

2020 ◽  
Author(s):  
Mona Kosary ◽  
Saeed Farzaneh ◽  
Maike Schumacher ◽  
Ehsan Forootan

<p>Increasing the quality of ionosphere modeling is crucial and remains a challenge for many geodetic applications such as GNSS Precise Point Positioning (PPP) and navigation. Ionosphere models are the main tool to provide an estimation of Total Electron Content (TEC) to be corrected from GNSS career phase and pseudorange measurements. Skills of these models are however limited due to the simplifications in model equations and the imperfect knowledge of model parameters. In this study, an ionosphere reconstruction approach is presented, where global estimations of geodetic-based TEC measurements are combined with an ionospheric background model. This is achieved here through a novel simultaneous Calibration and Data Assimilation (C/DA) technique that works based on the sequential Ensemble Kalman Filter (EnKF). The C/DA method ingests the actual ionospheric measurements (derived from global GNSS measurements) into the IRI (International Reference Ionosphere) model. It also calibrates those parameters that control the F2 layer’s characteristics such as selected important CCIR (Comité Consultatif International des Radiocommunicationsand) URSI (International Union of Radio Science) coefficients.  The calibrated parameters derived from the C/DA are then replaced in the IRI to simulate TEC values in locations, where less GNSS ground-station infrastructure exists, as well as to enhance the prediction of TEC when the observations are not available or their usage is cautious due to low quality. Our numerical assessments indicate the advantage of the C/DA to improve the IRI’s performance. Values of the TEC-Root Mean Square of Error (RMSE) are found to be decreased by up to 30% globally, compared to the original IRI simulations. The importance of the new TEC estimations is demonstrated for PPP applications, whose results show improvements in navigation applications.</p><p><strong>Keywords: </strong>Ionosphere, Calibration and Data Assimilation (C/DA), IRI, Total Electron Content (TEC), Precise Point Positioning (PPP), GNSS</p>


2020 ◽  
Vol 196 ◽  
pp. 01001
Author(s):  
Anna Yasyukevich ◽  
Semen Syrovatskii ◽  
Yury Yasyukevich

Based on the data from dual-frequency receivers of global navigation satellite systems (GNSS), we analyze the changes in GNSS positioning accuracy during the August 25-26, 2018 strong geomagnetic storm on a global scale. The storm is one of the strongest geomagnetic events of the solar cycle 24. To analyze the positioning quality, we calculated coordinates using the precise point positioning (PPP) method in the kinematic mode. We recorder a significant degradation in the PPP positioning accuracy during the main phase of the storm. The maximum effect is observed in the middle and high latitudes of the US-Atlantic longitude sector. The average PPP error during the storm is shown to exceed ~0.5 m, that is up to 5 times higher than the values typical on quiet days. Areas with increased PPP errors is revealed to correspond to the regions with significant increase in the intensity of total electron content variations of 10–20 min period range. This increase is presumably due to the auroral oval expansion toward middle latitudes.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-12
Author(s):  
Artur Fischer ◽  
Sławomir Cellmer ◽  
Krzysztof Nowel

Abstract. This paper proposes a new mathematical method of ionospheric delay estimation in single point positioning (SPP) using a single-frequency receiver. The proposed approach focuses on the Δ vertical total electron content (VTEC) component estimation (MSPPwithdVTEC) with the assumption of an initial and constant value equal to 5 TECU in any observed epoch. The principal purpose of the study is to examine the reliability of this approach to become independent from the external data in the ionospheric correction calculation process. To verify the MSPPwithdVTEC, the SPP with the Klobuchar algorithm was employed as a reference model, utilizing the coefficients from the navigation message. Moreover, to specify the level of precision of the MSPPwithdVTEC, the SPP with the International Global Navigation Satellite Systems (GNSS) Service (IGS) TEC map was adopted for comparison as the high-quality product in the ionospheric delay determination. To perform the computational tests, real code data were involved from three different localizations in Scandinavia using two parallel days. The criterion was the ionospheric changes depending on geodetic latitude. Referring to the Klobuchar model, the MSPPwithdVTEC obtained a significant improvement of 15 %–25 % in the final SPP solutions. For the SPP approach employing the IGS TEC map and for the MSPPwithdVTEC, the difference in error reduction was not significant, and it did not exceed 1.0 % for the IGS TEC map. Therefore, the MSPPwithdVTEC can be assessed as an accurate SPP method based on error reduction value, close to the SPP approach with the IGS TEC map. The main advantage of the proposed approach is that it does not need external data.


Space Weather ◽  
2015 ◽  
Vol 13 (10) ◽  
pp. 698-708 ◽  
Author(s):  
I. Rodríguez-Bilbao ◽  
S. M. Radicella ◽  
G. Rodríguez-Caderot ◽  
M. Herraiz

Sign in / Sign up

Export Citation Format

Share Document