scholarly journals An Integrated Observing Effort for Sargassum Monitoring and Warning in the Caribbean Sea, Tropical Atlantic, and Gulf of Mexico

Oceanography ◽  
2021 ◽  
pp. 68-69
Author(s):  
Joaquin Triñanes ◽  
◽  
Chuanmin Hu ◽  
Nathan Putman ◽  
Maria Olascoaga ◽  
...  
Zootaxa ◽  
2021 ◽  
Vol 5048 (2) ◽  
pp. 191-214
Author(s):  
YESSICA CHÁVEZ-LÓPEZ

The Sabellariidae has been scarcely studied in the Gulf of Mexico and the Caribbean Sea, and there are 18 species recorded out of 140 species known in the world. This work aims to improve the knowledge of the sabellariids in the northwestern tropical Atlantic region, provide standardized descriptions, and generate taxonomic identification keys. Sabellariids from three scientific collections were revised: Reference Collection of Laboratorio de Poliquetos, El Colegio de la Frontera Sur (ECOSUR), Chetumal, Collection of Laboratorio de Biodiversidad y Cambio Climático, ECOSUR, Campeche and Invertebrate Zoology Collection of Florida Natural History Museum, University of Florida, Gainesville. Three new species are described: Idanthyrsus bastidai n. sp. and I. mikeli n. sp. from Venezuela, and Sabellaria salazari n. sp. from the Yucatán Peninsula. In addition, new records of S. floridensis Hartman, 1944, S. vulgaris Verrill, 1873, and Phragmatopoma caudata Krøyer in Mörch, 1863 are provided.  


2018 ◽  
Vol 25 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Berenice Rojo-Garibaldi ◽  
David Alberto Salas-de-León ◽  
María Adela Monreal-Gómez ◽  
Norma Leticia Sánchez-Santillán ◽  
David Salas-Monreal

Abstract. Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT) and the published historical information. The hurricane time series provides a unique historical record on information about ocean–atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.


2018 ◽  
Vol 66 (3) ◽  
pp. 1055
Author(s):  
Ricardo Enrique González Muñoz ◽  
Carlos Hernández-Ortiz ◽  
Agustin Garese ◽  
Nuno Simões ◽  
Fabián Horacio Acuña

The sea anemone Condylactis gigantea is an ecologically important member of the benthic community in coral reefs of the tropical Atlantic, and displays two morphotypes with respect to the color in their tentacular tips: the green tip morphotype and the pink/purple tip morphotype. Although some molecular and ecological differences have been found between these morphotypes, no other morphological distinctions have been reported, and currently both are still considered a single taxonomic species. In the present study, we perform an exploration on the variability in the size of cnidae between these two morphotypes and performed statistical analyses to compare the 10 categories of cnidae from specimens hosted in the Cnidarian Collection of Gulf of Mexico and Mexican Caribbean, of the Universidad Nacional Autónoma de México, which were previously collected in several coral reefs localities of the Yucatán Peninsula. Results reveal no significant variation in cnidae size between the two morphotypes, but significant variations were found within each morphotype. In addition, we update the composition of the cnidom of C. gigantea, and the utility of the size of cnidae to distinguish between morphotypes or closely related species is discussed.


Zootaxa ◽  
2009 ◽  
Vol 2095 (1) ◽  
pp. 60-68 ◽  
Author(s):  
REBECA GASCA

Siphonophores are one of the least known gelatinous zooplankters in the tropical waters of the Northwestern Atlantic. Most of the regional knowledge about their diversity and distribution is based on surface samples (0–200 m). Siphonophores were collected from oceanic waters off the Mexican Caribbean across an expanded sampling range (0–940 m) during two cruises and were taxonomically examined. A total of 47 siphonophore species were recorded, of these, 14 had not been found in this sector of the Caribbean Sea and 10 represent new records for the Caribbean Basin. The number of species currently known from the western Caribbean is increased from 42 to 56. Some of these species also represent new records for the Northwestern Tropical Atlantic region. The greatest relative increase was observed among species of Lensia, five of which are exclusively deep-living forms dwelling below 300 m. A revised, expanded checklist of the siphonophores of the Western Caribbean is also provided. These results confirm the need of further deep sampling to increase our understanding of Caribbean siphonophore diversity.


Zootaxa ◽  
2012 ◽  
Vol 3210 (1) ◽  
pp. 50 ◽  
Author(s):  
CLARA MARÍA HEREU ◽  
EDUARDO SUÁREZ-MORALES

In waters of the Northwestern Atlantic pelagic tunicates may contribute significantly to the plankton biomass; however, theregional information on the salp fauna is scarce and limited to restricted sectors. In the Caribbean Sea (CS) and the Gulf ofMexico (GOM) the composition of the salpid fauna is still poorly known and this group remains among the less studiedzooplankton taxa in the Northwestern Tropical Atlantic. A revised checklist of the salp species recorded in the North At-lantic (NA, 0–40° N) is provided herein, including new information from the Western Caribbean. Zooplankton sampleswere collected during two cruises (March 2006, January 2007) within a depth range of 0–941 m. A total of 14 species wererecorded in our samples, including new records for the CS and GOM area (Cyclosalpa bakeri Ritter 1905), for the CS (Cy-closalpa affinis (Chamisso, 1819)), and for the Western Caribbean (Salpa maxima Forskål, 1774). The number of speciesof salps known from the CS and GOM rose to 18. A key for the identification of the species recorded in the region is provided. Studies on the ecological role of salps in several sectors of the NA are scarce and deserve further attention.


Zootaxa ◽  
2018 ◽  
Vol 4471 (2) ◽  
pp. 245 ◽  
Author(s):  
VÍCTOR M. CONDE-VELA

Pseudonereis gallapagensis Kinberg, 1865 and P. variegata (Grube & Kröyer in Grube, 1858) are the only two species of this genus commonly recorded along Atlantic American coasts, but their type localities are in the Eastern Pacific, and their morphology differs. Two new Pseudonereis species are described from Eastern Mexico: P. brunnea sp. n. from the Gulf of Mexico, and P. citrina sp. n. from the Caribbean Sea, previously confused with P. gallapagensis. In order to facilitate comparisons, descriptions based on specimens from near the type locality for P. gallapagensis (Peru and Ecuador), and topotypes for P. variegata (Valparaiso, Chile), are included. Based on these comparisons and current descriptions, the synonymies of Nereis ferox Hansen, 1882 described from Brazil with P. variegata, and of Pseudonereis formosa Kinberg, 1865 described from Hawaii with P. gallapagensis, are rejected. Consequently, both are regarded as distinct species and revised diagnoses are provided for them. The record of P. ferox from the Gulf of Guinea proved to be an undescribed species, and is herein described as P. fauveli sp. n. The number of paragnath rows in nereidid pharynx areas VII–VIII has been interpreted in several ways, leading to confusion; an alternative method to determine the number of bands and rows is proposed. The midventral region, the division of areas VII–VIII in furrow and ridge regions, and the description of the arrangement based on the pattern of paragnaths in such regions, are proposed. Further, the terms shield-shaped and pointed (P-bars) bars are redefined, and a new term, crescent-shaped bars, is proposed for paragnaths in the areas VI in some Pseudonereis and Perinereis species. A key for all Pseudonereis species is also included. 


2010 ◽  
Vol 23 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Ernesto Muñoz ◽  
Chunzai Wang ◽  
David Enfield

Abstract The influence of teleconnections on the Intra-Americas Sea (IAS; Gulf of Mexico and Caribbean Sea) has been mostly analyzed from the perspective of El Niño–Southern Oscillation (ENSO) on the Caribbean Sea (the latter being an extension of the tropical North Atlantic). This emphasis has overlooked both 1) the influence of other teleconnections on the IAS and 2) which teleconnections affect the Gulf of Mexico climate variability. In this study the different fingerprints that major teleconnection patterns have on the IAS during boreal spring are analyzed. Indices of teleconnection patterns are regressed and correlated to observations of oceanic temperature and atmospheric data from reanalyses and observational datasets. It is found that the Pacific teleconnection patterns that influence the IAS SSTs do so by affecting the Gulf of Mexico in an opposite manner to the Caribbean Sea. These analyzed Pacific climate patterns are the Pacific–North American (PNA) teleconnection, the Pacific decadal oscillation (PDO), and ENSO. The North Atlantic Oscillation (NAO) is related to a lesser degree with the north–south SST anomaly dipole than are Pacific teleconnection patterns. It is also found that the IAS influence from the midlatitude Pacific mostly affects the Gulf of Mexico, whereas the influence from the tropical Pacific mostly affects the Caribbean Sea. Therefore, the combination of a warm ENSO event and a positive PNA event induces a strong IAS SST anomaly dipole between the Gulf of Mexico and the Caribbean Sea during spring. By calculating an index that represents the IAS SST anomaly dipole, it is found that the dipole forms mostly in response to changes in the air–sea heat fluxes. In the Gulf of Mexico the dominant mechanisms are the air–sea differences in humidity and temperature. The changes in shortwave radiation also contribute to the dipole of net air–sea heat flux. The changes in shortwave radiation arise, in part, by the cloudiness triggered by the air–sea differences in humidity, and also by the changes in the convection cell that connects the Amazon basin to the IAS. Weaker Amazon convection (e.g., in the event of a warm ENSO event) reduces the subsidence over the IAS, and henceforth the IAS cloudiness increases (and the shortwave radiation decreases). This study contributes to a greater understanding of how the IAS is influenced by different Pacific and Atlantic teleconnections.


Sign in / Sign up

Export Citation Format

Share Document