scholarly journals Study of Flow Pressure Characteristics of Improved Rotary Valve

Mechanika ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 498-504
Author(s):  
Wenhua JIA ◽  
Chenbo YIN ◽  
Guo LI ◽  
Dasheng ZHU ◽  
Yanyan LIU ◽  
...  

This work was supported in part by The National Natural Science Fund of China, Scientific research fund of Nanjing Institute of Technology, Open fund project of Anhui University of Technology, Practical innovation project of graduate students in Jiangsu Province. Support Fund Nos. 51505211, 11302097, CKJB201901, HVC202004, SJCX20_0700.

Author(s):  
Geoffrey J. Peter

The author developed and taught the second hands-on graduate course in a series of three Environmentally Friendly Manufacturing (EFM) courses offered at the Manufacturing and Mechanical Engineering and Technology (MMET) Masters Program at the Oregon Institute of Technology (OIT), Portland Center. Courses in this series include Environmentally Conscious Manufacturing (ECM-1), Lean Manufacturing (LM) emphasizing Green and Total Productive Maintenance (TPM), and Emission Control in Manufacturing (ECM-II). The first two-thirds of the course curriculum consisted of regular classroom lectures, limited homework, two case studies, discussions, videos, and visits to two companies that were implementing or had implemented LM. In addition, a guest lecturer from Washington State Department of Ecology discussed relevant LM and environmental case studies. The final third of the course curriculum consisted of hands-on industry-based case studies. Students gained real-world experience in the manufacturing facilities of the four companies that elected to participate in the pilot project. The LM course, taught from an engineer’s point of view, emphasized the engineer’s role at the initial product design stage, and or manufacturing process design, including building design. This paper describes the course content of the LM curriculum, the innovative methods developed to teach the course, and the methods used to teach LM to graduate students with different undergraduate educational backgrounds including individuals with no prior industrial experience. It discusses three industry-based case studies, company profiles, and the benefits derived by participating companies and graduate students. Curriculum effectiveness was determined at the end of the course in part through students’ and industry participant’s comments. Future publication will describe the contents and case studies of the third ECM II in the EFM course curricula.


2018 ◽  
Vol 170 ◽  
pp. 02021
Author(s):  
Olga Chudiniva ◽  
Marina Afonina

The development of “Smart Cities” is associated with a comprehensive study of the General system of settlement. The aim of the study is to use the system of indicators for the objective assessment of territories, as well as determining the effect of each part in the overall assessment of the functioning of the «Smart City». The leading method of research is a comparative analysis of international rankings, surveys of experts and a comprehensive study of indicators. The article analyzes the papers of specialists working in the field of research «Smart Cities» and technologies: Mueller, Battarra, Srivastava, Dolgikh etc. The basis for this work were the studies by authoritative rating organizations such as IESE Business School University of Navarra, Vienna University of Technology and Research Institute of technology and communications (NIITC, Russia) which allowed to generalize the available research from the perspective of sustainable development and use them on a concrete example.The authors have adapted the existing groups of indicators in relation to the SKOLKOVO innovation city, Russia. The applied system is represented by 7 groups and 23 indicators, which allow to present the planning aspect of the current urban planning structure with its impact on human capital, transport infrastructure, social cohesion, the state of the environment, etc. The work lets confirm the influence of the selected indicators on the development of SKOLKOVO (Russia) and use the obtained data for the rating of “Smart Cities” adapted for Russia. The materials of the article can be extremely useful in the designing of concepts for the development of territories focused on the use of smart solutions in order to minimize costs in the implementation of new solutions.


Author(s):  
Douglass F. Taber

Adriaan J. Minnaard and Ben L. Feringa of the University of Groningen devised (J. Am. Chem. Soc. 2010, 132, 14349) what promises to be a general strategy for the construction of enantiomerically pure cyclopropanes, based on conjugate addition to acceptors such as 1 . X. Peter Zhang of the University of South Florida developed (J. Am. Chem. Soc. 2010, 132, 12796) a Co catalyst for the enantioselective cyclopropanation of α-olefins such as 3. Seiji Iwasa of Toyohashi University of Technology designed (Angew. Chem. Int. Ed. 2010, 49, 8439) a resin-bound Ru catalyst that could be used repeatedly for the enantioselective cyclization of the ester 6. Rai-Shung Lin of National Tsing-Hua University showed (Angew. Chem. Int. Ed. 2010, 49, 9891) that a gold catalyst could expand the alkyne 8 to the cyclobutene 9. Takao Ikariya of the Tokyo Institute of Technology reported (J. Am. Chem. Soc. 2010, 132, 16637) a detailed study of the enantioselective conjugate addition of malonate 11 to cyclopentenone 10. Vladimir A. D’yakonov of the Russian Academy of Sciences, Ufa, showed (Tetrahedron Lett. 2010, 51, 5886) that a cyclic alkyne 13 could be annulated to the cyclopentenone 14. Shunichi Hashimoto of Hokkaido University also designed (Angew. Chem. Int. Ed. 2010, 49, 6979) a resin-bound Rh catalyst that could also be used repeatedly for the enantioselective cyclization of the ester 15. Tushar Kanti Chakraborty of the Central Drug Research Institute used (Tetrahedron Lett. 2010, 51, 4425) Ti(III) to mediate the diastereoselective cyclization of 17 to 18. Alexandre Alexakis of the University of Geneva extended (Synlett 2010, 1694) enantioselective conjugate addition of isopropenyl to the more difficult enone 19. Joseph P. A. Harrity of the University of Sheffield showed (Org. Lett. 2010, 12, 4832) that Pd could catalyze the rearrangement of 21 to 22. Strategies for the controlled construction of polycyclic ring systems are also important. Günter Helmchen of the Universität Heidelberg showed (J. Org. Chem. 2010, 75, 7917) that 23 was efficiently cyclized to the diene with Pt catalyst. The reaction could be carried out in the presence of the dienophile 24 to give 25 directly.


Author(s):  
Douglass F. Taber

Kyungsoo Oh of Chung-Ang University cyclized (Org. Lett. 2015, 17, 450) the chloro enone 1 with NBS to the furan 2. Hongwei Zhou of Zhejiang University acylated (Adv. Synth. Catal. 2015, 357, 389) the imine 3, leading to the furan 4. H. Surya Prakash Rao of Pondicherry University found (Synlett 2014, 26, 1059) that under Blaise conditions, exposure of 5 to three equivalents of 6 led to the pyrrole 7. Yoshiaki Nishibayashi of the University of Tokyo and Yoshihiro Miyake, now at Nagoya University, prepared (Chem. Commun. 2014, 50, 8900) the pyrrole 10 by adding the silane 9 to the enone 8. Barry M. Trost of Stanford University developed (Org. Lett. 2015, 17, 1433) the phosphine-mediated cyclization of 11 to an intermediate that on brief exposure to a Pd catalyst was converted to the pyridine 12. Nagatoshi Nishiwaki of the Kochi University of Technology added (Chem. Lett. 2015, 44, 776) the dinitrolactam 14 to the enone 13 to give the pyridine 15. Metin Balci of the Middle East Technical University assembled (Org. Lett. 2015, 17, 964) the tricyclic pyridine 18 by adding propargyl amine 17 to the aldehyde 16. Chada Raji Reddy of the Indian Institute of Chemical Technology cyclized (Org. Lett. 2015, 17, 896) the azido enyne 19 to the pyridine 20 by simple exposure to I2. Björn C. G. Söderberg of West Virginia University used (J. Org. Chem. 2015, 80, 4783) a Pd catalyst to simultaneously reduce and cyclize 21 to the indole 22. Ranjan Jana of the Indian Institute of Chemical Biology effected (Org. Lett. 2015, 17, 672) sequential ortho C–H activation and cyclization, adding 23 to 24 to give the 2-substituted indole 25. In a complementary approach, Debabrata Maiti of the Indian Institute of Technology Bombay added (Chem. Eur. J. 2015, 21, 8723) 27 to 26 to give the 3-substituted indole 28. In a Type 8 construction, Nobutaka Fujii and Hiroaki Ohno of Kyoto University employed (Chem. Eur. J. 2015, 21, 1463) a gold catalyst to add 30 to 29, leading to 31.


Sign in / Sign up

Export Citation Format

Share Document