Bioconversion of Lactose from Cheese Whey to Organic Acids

Author(s):  
José Manuel Pais-Chanfrau ◽  
Jimmy Núñez-Pérez ◽  
Rosario del Carmen Espin-Valladares ◽  
Marcos Vinicio Lara-Fiallos ◽  
Luis Enrique Trujillo-Toledo

Organic acids constitute a group of organic compounds that find multiple applications in the food, cosmetic, pharmaceutical, and chemical industries. For this reason, the market for these products is continuously growing. Traditionally, most organic acids have been produced by chemical synthesis from oil derivatives. However, the irreversible depletion of oil has led us to pay attention to other primary sources as possible raw materials to produce organic acids. The microbial production of organic acids from lactose could be a valid, economical, and sustainable alternative to guarantee the sustained demand for organic acids. Considering that lactose is a by-product of the dairy industry, this review describes different procedures to obtain organic acids from lactose by using microbial bioprocesses.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1592
Author(s):  
Olga P. Ibragimova ◽  
Anara Omarova ◽  
Bauyrzhan Bukenov ◽  
Aray Zhakupbekova ◽  
Nassiba Baimatova

Air pollution is one of the primary sources of risk to human health in the world. In this study, seasonal and spatial variations of multiple volatile organic compounds (VOCs) were measured at six sampling sites in Almaty, Kazakhstan. The seasonal and spatial variations of 19 VOCs were evaluated in 2020, including the periods before and after COVID-19 lockdown. The concentrations of 9 out of 19 VOCs had been changed significantly (p < 0.01) during 2020. The maximum concentrations of total VOCs (TVOCs) were observed on 15, 17, and 19 January and ranged from 233 to 420 µg m−3. The spatial distribution of TVOCs concentrations in the air during sampling seasons correlated with the elevation and increased from southern to northern part of Almaty, where Combined Heat and Power Plants are located. The sources of air pollution by VOCs were studied by correlations analysis and BTEX ratios. The ranges of toluene to benzene ratio and benzene, toluene, and ethylbenzene demonstrated two primary sources of BTEX in 2020: traffic emissions and biomass/biofuel/coal burning. Most of m-, p-xylenes to ethylbenzene ratios in this study were lower than 3 in all sampling periods, evidencing the presence of aged air masses at studied sampling sites from remote sources.



Author(s):  
Hana Kaňová ◽  
Joffrey Carre ◽  
Valerie Vranová ◽  
Klement Rejšek ◽  
Pavel Formánek

This study was conducted to determine the composition of sugars and organic acids in root exudates of Miscanthus × Giganteus and to find out if microorganisms of the rhizospheric soil are limited by mi­ne­ral nutrients. The following sugars and organic acids were determined in root exudates of this plant: glucose, saccharose, and acids such as succinic, propionic, citric, tartaric, malic, oxalic, ascorbic, acetic and fumaric. Respiration of soil from rhizosphere of Miscanthus × Giganteus was found to be limited by N, K and Ca. Respiration rate after application of mineral compounds increased in following orther: nitrate > calcium > potassium > ammonium, giving approx. 165, 99, 52 and 31 % increase compared to control. Further research is necessary to determine the role of plant nutrients from the point of their limitations for rhizosphere microorganisms, to broader very rare knowledges in this topic, especially for polluted soils to stimulate efficiency of phytoremediations.



Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1505
Author(s):  
Samantha Arteaga-Del Angel ◽  
Brenda L. Valle-Hernandez ◽  
Violeta Mugica-Alvarez

Among the main pollutants emitted into the atmosphere by diesel combustion are the particles. Most of the studies suggest that the greatest impact on health by the particles is caused by some of the organic compounds such as the polycyclic aromatic hydrocarbons, which are highly toxic and carcinogenic compounds. Some of the strategies that are being implemented to mitigate these harmful particles emissions are the use of alternative fuels, such as biodiesel. In this research, the characterization of six fuels (diesel and five biodiesel, obtained from different raw materials) was carried out. Diesel:Biodiesel blends were prepared at 5, 10 and 20% of biodiesel on proportion to the diesel (B5, B10 and B20). Additionally, B100 was analyzed for some biodiesels. The particles emitted by the combustion of the different fuels were sampled and their concentration was determined. The organic compounds were extracted from the particles by ultrasound-assisted extraction and subsequently the polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography coupled to mass spectrometry (GC-MS). In this study, it was observed that the use of biodiesel decreases the emission of particle concentration, but it is not significant. In the case of the concentrations of carcinogenic compounds (PAHs), the B20 biodiesel blends emissions had a statistically significant reduction compared to diesel emissions.





Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 390
Author(s):  
Agatha Bastida

Biocatalysis is very appealing for industry because it allows the synthesis of products that are not accessible by chemical synthesis, use of alternative raw materials, lower operating costs, low fixed cost infrastructure and improved eco-efficiency [...]



2008 ◽  
Vol 26 (No. 5) ◽  
pp. 309-323 ◽  
Author(s):  
H. Vlková ◽  
V. Babák ◽  
R. Seydlová ◽  
I. Pavlík ◽  
J. Schlegelová

Microbial biofilms which form on all types of surfaces of technological systems in the dairy industry and on dairy farms adversely affect the quality and safety of final products, i.e. both foodstuffs and raw materials used for their production. The fact that a number of microorganisms are alimentary pathogens, e.g. <I>Staphylococcus aureus</I> or <I>Listeria monocytogenes,</I> makes a serious problem directly affecting human health. Biofilms are usually formed by various species of microorganism, which protect each other against the effects of biocidal (antibacterial) agents and are resistant to these agents. The colonisation of surfaces of the open and closed piping systems, floors, waste, walls and ceilings of the production halls becomes a major problem in the selection of effective sanitation agents for their control. Based on the existing model studies, practical methods for testing the effectiveness of sanitation procedures should be evaluated, including the selection of biocides and comparison of the physical parameters of the sanitation procedures. Testing the effectiveness of the sanitation agents should be performed with the use of standardised tests, which consider microbial, structural, and chemical characteristics of the living microbial communities on specific contact surfaces in the food-processing industry.



2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Natália Mezzomo ◽  
Sandra R. S. Ferreira

Carotenoid is a group of pigments naturally present in vegetal raw materials that have biological properties. These pigments have been used mainly in food, pharmaceutical, and cosmetic industries. Currently, the industrial production is executed through chemical synthesis, but natural alternatives of carotenoid production/attainment are in development. The carotenoid extraction occurs generally with vegetal oil and organic solvents, but supercritical technology is an alternative technique to the recovery of these compounds, presenting many advantages when compared to conventional process. Brazil has an ample diversity of vegetal sources inadequately investigated and, then, a major development of optimization and validation of carotenoid production/attainment methods is necessary, so that the benefits of these pigments can be delivered to the consumer.



2005 ◽  
Vol 71 (2) ◽  
pp. 1066-1071 ◽  
Author(s):  
Didem Güven ◽  
Ana Dapena ◽  
Boran Kartal ◽  
Markus C. Schmid ◽  
Bart Maas ◽  
...  

ABSTRACT Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min−1 mg of protein−1) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO2, with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.



Sign in / Sign up

Export Citation Format

Share Document