scholarly journals CFD Simulations in Mechanically Stirred Tank and Flow Field Analysis: Application to the Wastewater (Sugarcane Vinasse) Anaerobic Digestion

2020 ◽  
Author(s):  
Hélène Caillet ◽  
Alain Bastide ◽  
Laetitia Adelard

Anaerobic digestion is a widely used process for waste treatment and energy production. This natural process takes place in a controlled environment, anaerobic digesters. Mixing is one of the main operating parameters. The understanding of the flows during the agitation of the medium is crucial for the optimization of the process yield. In fact, the mass and heat transfers are enhanced by the agitation. However, the complex biochemical reactions can be inhibited with overly vigorous agitation. A detailed and in-depth understanding of the phenomena occurring during agitation requires modeling studies. In this chapter, we propose a general approach, based on computational fluid mechanics (CFD), to analyze the mechanical mixing of an anaerobic reactor. We apply this work to the anaerobic digestion of the sugarcane vinasse, which is a liquid waste generated during the production of alcohol. The single-phase Reynolds-averaged Navier-Stokes (RANS) simulations of mechanical agitation of Newtonian fluids for different rotational speeds are presented. The equations system is closed with the standard k-epsilon turbulence model. The flow field is analyzed with the velocity profiles, the Q and Lambda2 fields, the pressure and the vorticity.

2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Alessandro Armellini ◽  
Filippo Coletti ◽  
Tony Arts ◽  
Christophe Scholtes

The present contribution addresses the aerothermal, experimental, and computational studies of a trapezoidal cross-sectional model simulating a trailing edge cooling cavity with one rib-roughened wall. The flow is fed through tilted slots on one side wall and exits through straight slots on the opposite side wall. The flow field aerodynamics is investigated in Part I of the paper. The reference Reynolds number is defined at the entrance of the test section and set at 67,500 for all the experiments. A qualitative flow model is deduced from surface-streamline flow visualizations. Two-dimensional particle image velocimetry measurements are performed in several planes around midspan of the channel and recombined to visualize and quantify three-dimensional flow features. The crossing-jets issued from the tilted slots are characterized and the jet-rib interaction is analyzed. Attention is drawn to the motion of the flow deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained from the finite volume Reynolds-averaged Navier–Stokes solver, CEDRE.


Author(s):  
Peng Sun ◽  
Jingjun Zhong ◽  
Guotai Feng

The performance and stability of a fan in clean and distorted inlet flow can be improved through the use of bowed stator blades. Measurements between the blade rows in transonic and supersonic flow are too complex to provide any useful insights, so 3D flow simulations are required. In this paper, a time-accurate three-dimensional Navier-Stokes solver of the unsteady flow field in a transonic fan is carried out using “Fluent-parallel” in a parallel supercomputer. Two sets of simulations are performed. The first simulation focuses on a better understanding of inlet total pressure distortion effects on a transonic fan. The second set of numerical simulation aims at studying the improvements of fan performance made by bowed stator blades. Three aspects are contained in this paper. The first is about the distortion effects on characteristics of the fan stage with straight stator. The effects of bowed stator on fan performance with inlet distortion are demonstrated secondly. One hand bowed stator increases the loss in rotor. On the other hand, it reduces the flow loss in stator. Finally, the patterns of flow loss caused by total pressure distortion with straight/bowed stator are compared. The scale of vortex in stator induced by inlet total pressure distortion is weakened by bowed blades, which decreases the stator loss.


Author(s):  
Brian H. Dennis ◽  
George S. Dulikravich ◽  
Zhen-Xue Han

The objective in this aerodynamic shape design effort is to minimize total pressure loss across the two-dimensional linear airfoil cascade row while satisfying a number of constraints. They included fixed axial chord, total torque, inlet and exit flow angles, and blade cross-section area, while maintaining thickness distribution greater than a minimum specified value. The aerodynamic shape optimization can be performed by using any available flow-field analysis code. For the analysis of the performance of intermediate cascade shapes we used an unstructured grid based compressible Navier-Stokes flow-field analysis code with k-e turbulence model. A robust genetic optimization algorithm was used for optimization and a constrained sequential quadratic programming was used enforcement of certain constraints. The airfoil geometry was parameterized using conic section parameters and B-splines thus keeping the number of geometric design variables to a minimum while achieving a high degree of geometric flexibility and robustness. Significant reductions of the total pressure loss were achieved using this constrained method for a supersonic exit flow axial turbine cascade.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Zhang ◽  
Shoufang Liang ◽  
Chenxing Hu

An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS) solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.


Author(s):  
Kasra Amini ◽  
Alireza Mani

The flow field analysis has been numerically performed on the effectiveness of a flow control mechanism called the Flow Controlling Plate (FCP) on buildings. For this purpose, the gable roof geometry has been considered as a common urban element in the western residential architecture. As the justification step towards the functionality of the concept of FCPs, the 2D numerical investigation of the flow field under the realistic assumptions of atmospheric boundary layer profiles for the spectrum ranging from the so-called light air to strong breeze wind speed classifications have been performed. The CFD (Computational Fluid Dynamics) field calculations have been conveyed as an unsteady case for the flow around a bluff body, using RANS (Reynolds Average Navier-Stokes) averaging methods targeting a solution of Navier-Stokes equations of the fluid flow. The results have proven the hypotheses of the contribution of the FCPs on preventing the flow separation on a partial region of the surface and improving the boundary layer development on the rest of the gable roof facades, which have led to a drastic reduction in the convective heat transfer coefficient as well as the drag force exerted on the roof


Sign in / Sign up

Export Citation Format

Share Document