scholarly journals Nut Phytonutrients for Healthy Gut: Prebiotic Potential

2020 ◽  
Author(s):  
Jinu Medhi ◽  
Mohan Chandra Kalita

Nuts are a combination of prebiotic fiber and phytonutrients and have antioxidant, anti-inflammatory effects. According to 2005 “My Pyramid” it has been grouped with the meat and bean group. Bioactive compounds of nuts such as resveratrol, phytosterols, phenolic acids, flavonoids, and carotenoids display synergistic effects on preventing many age related pathologies. Resveratrol has been reported to extend the lifespan in model organisms such as yeast, Drosophila and mouse. Reports propose nuts as the best substitute for red meat to reduce mortality risk. Macadamia nuts with a rich source of monounsaturated fats (oleic and palmitoleic acids) imparts cholesterol lowering effects thereby preventing coronary artery disease. Anacardic acid, a phenolic lipid found in cashew nut shells, is specifically enriched in metastatic melanoma patients in response to immunotherapy. The non-bio-accessible materials of nuts serve as a substrate for human gut microbiota. Regular Walnut enriched diet improves lipid content and enhances probiotic and butyrate producing bacteria composition in healthy individuals. This also reduces cardiovascular risk factors by promoting beneficial bacteria. Gut microbiota diversity studies report an enrichment with genera capable of producing short chain fatty acids (SCFA) following consumption of nuts. The prebiotic effect of nuts can be partly from refining butyrate producing bacteria composition. Hence an optimized diet rich with nuts can be an intervention for promoting a healthy microbiota population and thereby improving overall physiology.

Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1613 ◽  
Author(s):  
Ronald Hills ◽  
Benjamin Pontefract ◽  
Hillary Mishcon ◽  
Cody Black ◽  
Steven Sutton ◽  
...  

The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.


Author(s):  
Monica Gio-Batta ◽  
Karin Spetz ◽  
Malin Barman ◽  
Lennart Bråbäck ◽  
Elisabeth Norin ◽  
...  

<b><i>Background:</i></b> Short-chain fatty acids (SCFAs) are abundant bacterial metabolites in the gut, with immunomodulatory properties. Hence, they may influence allergy development. Previous studies have linked fecal SCFA pattern during infancy with allergy. However, the association of SCFAs to allergic outcomes in adolescence is not well established. Here, we examined how the fecal SCFA pattern at 1 year of age related to allergy at 13 years of age. <b><i>Methods:</i></b> Levels of 8 SCFAs in fecal samples collected at 1 year of age from 110 children were quantified using gas chromatography. The same individuals were evaluated at 13 years of age for allergic symptoms, allergy diagnosis and allergy medication by questionnaire, and for sensitization using skin prick test against egg, milk, fish, wheat and soy, cat, dog, horse, birch, and timothy grass. <b><i>Results:</i></b> The concentration of fecal valeric acid at 1 year of age was inversely associated with eczema at 13 years of age (OR 0.6, 95% CI: 0.4–1.0, <i>p</i> = 0.049) and showed a trend for inverse association with food allergy at 13 years of age (OR 0.6, 95% CI: 0.4–1.0, <i>p</i> = 0.057). In a sub-group analysis of children with eczema at 1 year of age, a higher concentration of fecal valeric acid was linked with reduced risk of their eczema remaining at 13 years of age (OR 0.2, 95% CI: 0.0–1.5), although this latter analysis did not reach statistical significance (<i>p</i> = 0.12). <b><i>Conclusions:</i></b> Our findings lend further support to the notion of early childhood as a critical period when allergy may be programmed via the gut microbiota. Higher levels of fecal valeric acid may be characteristic of a protective gut microbiota and/or actively contribute to protection from eczema and food allergy.


2020 ◽  
Vol 15 (1) ◽  
pp. 52-56
Author(s):  
Sri Winarti ◽  
Agung Pasetyo

The consumption of prebiotics is known to affect the balance of gut microbiota. The purpose of this study was to explore how a galactomannan-rich effervescent drink can affect the population of Lactobacillus, Bifidobacterium, E. coli, and the concentration of short-chain fatty acids in the cecum of rats. Twenty-eight male Wistar rats (aged 2 months) were divided equally into 7 groups and treated orally each day for 15 days with 2 mL effervescent drinks with increasing levels of prebiotic galactomannan. The dosage of 500 mg galactomannan increased the growth of Lactobacillus spp. and Bifidobacterium spp. with inhibition of the growth of E.coli with increased formation of short-chain fatty acids such as acetate, propionate, and butyrate in the cecum of rats.


2019 ◽  
Vol 26 (19) ◽  
pp. 3567-3583 ◽  
Author(s):  
Maria De Angelis ◽  
Gabriella Garruti ◽  
Fabio Minervini ◽  
Leonilde Bonfrate ◽  
Piero Portincasa ◽  
...  

Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.


2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


2020 ◽  
Vol 70 ◽  
pp. 20-22 ◽  
Author(s):  
Daniel Grün ◽  
Valerie C. Zimmer ◽  
Jil Kauffmann ◽  
Jörg Spiegel ◽  
Ulrich Dillmann ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2674
Author(s):  
Chien-Ning Hsu ◽  
Julie Y. H. Chan ◽  
Kay L. H. Wu ◽  
Hong-Ren Yu ◽  
Wei-Chia Lee ◽  
...  

Gut microbiota-derived metabolites, in particular short chain fatty acids (SCFAs) and their receptors, are linked to hypertension. Fructose and antibiotics are commonly used worldwide, and they have a negative impact on the gut microbiota. Our previous study revealed that maternal high-fructose (HF) diet-induced hypertension in adult offspring is relevant to altered gut microbiome and its metabolites. We, therefore, intended to examine whether minocycline administration during pregnancy and lactation may further affect blood pressure (BP) programmed by maternal HF intake via mediating gut microbiota and SCFAs. Pregnant Sprague-Dawley rats received a normal diet or diet containing 60% fructose throughout pregnancy and lactation periods. Additionally, pregnant dams received minocycline (50 mg/kg/day) via oral gavage or a vehicle during pregnancy and lactation periods. Four groups of male offspring were studied (n = 8 per group): normal diet (ND), high-fructose diet (HF), normal diet + minocycline (NDM), and HF + minocycline (HFM). Male offspring were killed at 12 weeks of age. We observed that the HF diet and minocycline administration, both individually and together, causes the elevation of BP in adult male offspring, while there is no synergistic effect between them. Four groups displayed distinct enterotypes. Minocycline treatment leads to an increase in the F/B ratio, but decreased abundance of genera Lactobacillus, Ruminococcus, and Odoribacter. Additionally, minocycline treatment decreases plasma acetic acid and butyric acid levels. Hypertension programmed by maternal HF diet plus minocycline exposure is related to the increased expression of several SCFA receptors. Moreover, minocycline- and HF-induced hypertension, individually or together, is associated with the aberrant activation of the renin–angiotensin system (RAS). Conclusively, our results provide a new insight into the support of gut microbiota and its metabolite SCAFs in the developmental programming of hypertension and cast new light on the role of RAS in this process, which will help prevent hypertension programmed by maternal high-fructose and antibiotic exposure.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anastasiya Börsch ◽  
Daniel J. Ham ◽  
Nitish Mittal ◽  
Lionel A. Tintignac ◽  
Eugenia Migliavacca ◽  
...  

AbstractSarcopenia, the age-related loss of skeletal muscle mass and function, affects 5–13% of individuals aged over 60 years. While rodents are widely-used model organisms, which aspects of sarcopenia are recapitulated in different animal models is unknown. Here we generated a time series of phenotypic measurements and RNA sequencing data in mouse gastrocnemius muscle and analyzed them alongside analogous data from rats and humans. We found that rodents recapitulate mitochondrial changes observed in human sarcopenia, while inflammatory responses are conserved at pathway but not gene level. Perturbations in the extracellular matrix are shared by rats, while mice recapitulate changes in RNA processing and autophagy. We inferred transcription regulators of early and late transcriptome changes, which could be targeted therapeutically. Our study demonstrates that phenotypic measurements, such as muscle mass, are better indicators of muscle health than chronological age and should be considered when analyzing aging-related molecular data.


Sign in / Sign up

Export Citation Format

Share Document