scholarly journals Lignocellulosic of Oil Palm Biomass to Chemical Product via Fermentation

2021 ◽  
Author(s):  
Farhan M. Said ◽  
Nor Farhana Hamid ◽  
Mohamad Al-Aamin Razali ◽  
Nur Fathin Shamirah Daud

The world’s largest contribution to biomass comes from lignocellulosic material. Oil palm biomass is one of the most important sources of lignocellulosic material in Asia, with biomass produced four times that of palm oil. Oil palm trunk (OPT), oil palm empty fruit bunches (OPEFB), oil palm frond (OPF), and palm oil mill effluent (POME) are examples of biomass lignocellulosic materials produced. Unfortunately, the majority of waste is disposed of in landfills, causing serious environmental issues such as global warming and the greenhouse effect. These wastes are known to contain a high concentration of cellulose and hemicellulose. Because of its high carbohydrate content, it has a promising future as a feedstock for the fermentation process, which can produce a variety of chemical products at a low cost. This chapter will describe the biochemical products produced from various oil palm biomass via various fermentation processes involving various microorganism strains.

2015 ◽  
Vol 5 (02) ◽  
Author(s):  
Erwinsyah . ◽  
Atika Afriani ◽  
Teddy Kardiansyah

Oil palm biomass derived from oil palm processing plant has a very abundant availability or nearly equal to the yield of crude palm oil. This paper provides a review of the chemical and fibers characteristics from the empty fruit bunches of oil palm tree associated with the properties of pulp and papermaking. Potential use of fibers from oil palm tree, which is included in the group of nonwood, as raw material for pulp and paper is large enough for wood substitution. Opportunities to use oil palm tree fibers as raw material for pulp and paper in industrial scale is very prospective. Keywords: empty fruit bunches, characteristics, utilization, pulp, paperABSTRAKBiomassa sawit yang berasal dari pabrik pengolahan sawit memiliki ketersediaan sangat melimpah atau hampir sama dengan rendemen minyak sawit mentah. Makalah ini memberikan tinjauan mengenai karakteristik kimia dan serat dari tandan kosong sawit terkait dengan sifat-sifat pembuatan pulp dan kertas. Potensi penggunaan serat dari tanaman sawit yang termasuk dalam kelompok nonkayu sebagai bahan baku pulp dan kertas cukup besar, untuk substitusi kayu. Peluang penggunaan serat tanaman sawit serta pemanfaatannya sebagai bahan baku pulp dan kertas skala industri cukup prospektif.Kata kunci: tandan kosong sawit, karakteristik, pemanfaatan, pulp, kertas


2019 ◽  
Vol 48 (3) ◽  
pp. 190-197 ◽  
Author(s):  
HJW Mutsaers

Palm oil is a valuable product used all over the world in a vast number of products for daily use. The oil palm, once well established, is very productive, captures large amounts of carbon and provides good protection to the soil. The use of residues as fuel makes oil extraction plants self-sufficient in energy and produces surplus electricity. A large part of the plant nutrients can be recycled by composting empty fruit bunches, with palm oil mill effluent and ashes added. Smallholders contribute close to 50% of the palm oil traded worldwide. The crop has acquired a bad reputation, however, because of the forests which have been and continue to be cleared for new plantations. The rate of forest clearing has been particularly high in Indonesia and Malaysia, with Thailand and some African countries following at a distance. Forests on peat soils are also increasingly used, releasing even larger amounts of CO2 from peat decomposition. In the ecologies where oil palm thrives, vast expanses of speargrass ( Imperata cylindrica) have resulted from logging and injudicious land use, including poorly managed plantations. Although speargrass is hard to get rid of, a sequence of annual and perennial plant species is capable to suppress the grass, opening a window for planting oil palm in the degraded land. A well-established oil palm crop will then keep the grass out, because of the latter’s intolerance for shade. Thus, the oil palm’s image in the eyes of the public as an ecological disaster can be converted into its opposite: that of a tool to restore the productive capacity of degraded lands. Vast numbers of smallholders can thereby safeguard their livelihood. The oil palm industry has the means and skills to make this happen.


Author(s):  
Bemgba Bevan Nyakuma ◽  
Olagoke Oladokun

The chapter presents recent developments in the gasification of oil palm empty fruit bunches (EFB) through fluidized bed gasifiers. The bioenergy potential of oil palm EFB as an environmentally friendly biomass is presented. Furthermore, the chapter highlights the prospects of utilising biomass gasification technology as a practical method for valorising EFB. The successful development and deployment of gasification for oil palm EFB depends on a critical understanding of the fundamental theories of the chemical reactions, classification, and operational parameters of biomass gasifiers. Hence, the potential use of fluidized bed gasifiers for oil palm empty fruit bunches (EFB) is highlighted in detail. Next, the analysis of the fundamental theories, assumptions, and equations of fluidization critical to fluidized bed gasification of EFB is presented. The chapter concludes by highlighting the potential of oil palm EFB as a low-cost, abundant, lignocellulosic feedstock for valorisation through fluidized bed gasification.


2018 ◽  
Vol 34 ◽  
pp. 01008
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mostafa Samadi ◽  
Abdul Rahman Mohd. Sam ◽  
Nur Hafizah Abd Khalid ◽  
Noor Nabilah Sarbini ◽  
...  

This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.


Konversi ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 9
Author(s):  
Ramli Ramli ◽  
Marlinda Marlinda

Abstract- East Kalimantan, especially Kutai regency produces 1,112,442 tons/year of palm oil. Oil palm empty fruit bunches (EFB) are one of the wastes generated in the processing of palm oil that is equal to 20-23% of the fresh fruit bunches, so the amount of EFB that can be generated is 244,737.24 tons/year. The purpose of this study is to determine the effect of palm sugar as a nutrient to nutrient nitrogen EM4, phosphor and potassium in composting EFB. This research was conducted by varying the mass of Palm Sugar: 0.4000 g, 0.6000 g, 0.8000 g, 1.0000 g and 1.2000 g. The main composting process that was carried out by adding EM4 solution of 10 mL and 100 mL sugar solution into 200 grams EFB, letting it stand for 30 days, and after that the analysis was conducted. The total content of nutrients is highest on the mass of 1.2000 g palm sugar that is 3.174%. The conclusion of this study is the greater the mass of Palm Sugar is added, the greater the concentration of nutrients found in the composting by using bacterial EM4. Keywords: bio-activator EM4, palm Sugar, EFB.


2016 ◽  
Vol 82 (2) ◽  
Author(s):  
. ALHIDAYATULLAH ◽  
Lisdar I SUDIRMAN1 ◽  
Okky Setyawati DHARMAPUTRA

Abstract  Oil palm empty fruit bunches (OPEFB) are the ligno-cellulosic wastes from palm oil processing. They can be used to produce raw materials for value-added products. The purpose of this study was to determine the degradation capacity of JPA wood rot fungi and Trichoderma sp. S2-2 on OPEFB. The 500 g of substrates consisted of 81% of OPEFB, 15% bran, 1.5% lime and 1.5% gypsum were used for growing. The substrates were inoculated with five treatments i.e without isolate (K); with JPA isolate (JPA); with Trichoderma sp. S2-2 (T); with the two isolates (JPA + T); and with JPA isolate and after four weeks of incubation inoculated with Trichoderma sp. S2-2 [(JPA)+T]. All treatments were incubated for eight weeks. The results showed that JPA+T was the best treatment which the two isolates must be inoculated simultaneously for degradation of OPEFB. Lignin and cellulose content on JPA+T treatment respectively were 20.83% and 33.77%. C/N ratio of OPEFB degraded with JPA+T was lower than the C/N ratio of TKKS degraded with Trichoderma harzianum and TKKS degraded with EM4 in previous study. AbstrakTandan kosong kelapa sawit (TKKS) merupakan limbah lignoselulosa dari pengolahan minyak kelapa sawit. TKKS dapat dimanfaatkan untuk memperoleh bahan baku untuk produk bernilai tambah. Tujuan penelitian ini adalah untuk mengetahui kemampuan degradasi jamur pelapuk kayu isolat JPA dan Trichoderma sp. S2-2 pada TKKS. Sebanyak 500 g substrat terdiri dari 81% TKKS, 15% dedak, 1,5% kapur, dan 1,5% gypsum digunakan untuk per-tumbuhan. Substrat diinokulasi dengan lima perlakuan yaitu tanpa isolat (K); dengan isolat JPA (JPA); dengan Trichoderma sp. S2-2 (T); dengan isolat JPA dan setelah empat minggu inkubasi, diinokulasi dengan Trichoderma sp. S2-2 [(JPA+T)]. Semua perlakuan diinkubasi selama delapan minggu. Hasil percobaan menunjukkan bahwa perlakuan JPA+T adalah perlakuan terbaik yaitu kedua isolat tesebut harus diinokulasi secara bersamaan untuk mendegradasi TKKS. Kandungan lignin dan selulosa TKKS dengan  perlakuan  JPA+T   masing-masing  adalah  20,83% dan 33,77%. Rasio C/N TKKS hasil degradasi dengan JPA+T lebih  rendah  daripada  rasio C/N pada TKKS yang didegradasi dengan Trichoderma harzianum dan TKKS yang didegradasi dengan EM4 pada penelitian sebelumnya.


2019 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Zainudin Zainudin ◽  
Abdul Rofik

Palm oil is an export commodity of the plantation sector which began to develop rapidly in East Kalimantan with an area until 2017 reaching 1,192,342 Ha consisting of 284,523 Ha as plasma / smallholder plants, 14,402 Ha owned by SOEs as the core and 893,417 Ha owned by Large Private Plantation.Empty bunches (Tankos) are solid waste that is produced by palm oil mills in the process of managing palm fruit bunches into crude palm oil (CPO). In each processing 1 ton of fruit bunches will produce Tankos as much as 21-23%. Oil palm empty fruit bunches that are not managed properly will become waste that does not provide benefits. Compost technology using a local microorganism starter (MOL) can be used to produce quality organic fertilizer considering the process involves decomposing bacteria of organic ingredients. Compost technology from tankos waste is very possible to be developed, both at the level of farmers and private oil palm companies. This study aim to determine the potential of palm oil mill effluent (POME) as an bioactivator for composting oil palm empty fruit bunches, and to determine the chemical quality of oil palm empty fruit bunch compost with MOL bioactivator liquid waste as organic fertilizer. Through this research, it is expected that the palm oil mill's liquid waste can be utilized as a bioactivator for compost production and can be applied to the production of oil palm empty fruit bunch compost.This research was conducted for one year. The stages of the research are as follows: 1. Chemical analysis of POME waste, 2. Making LM POME, 3. Chemical analysis of LM POME, and 4. Making EFB Compost, and Chemical Analysis of oil palm empty fruit bunch compost. Compost making using randomized block design (RBD) with 5 treatments and 4 replications include: P0 = 0 ml / liter of water, P1 = 100 ml / liter of water, P2 = 300 ml / liter of water, P3 = 600 ml / liter of water, P4 = 900 ml / liter of water.The analysis showed that there was an increase in the chemical properties of POME after becoming an LM POME activator. Increased chemical properties such as phosphorus from 0.01 to 0.02, potassium from 0.19 to 0.27, and organic carbon from 0.90 to 1.30, but some chemical properties such as pH decreased from 7.20 to 3, 37 and nitrogen decreased from 0.37 to 0.05. The EFB compost analysis results showed that the highest pH was p2 with a value of 8.23, the highest organic C at p4 treatment with a value of 57.65, the highest total N at p3 with a value of 1.80, P2O5 the highest total at p3 with a value of 0.64, and the highest total K2O at p4 with a value of 2.68. 


Sign in / Sign up

Export Citation Format

Share Document