scholarly journals Screening Key Differentially Expressed Genes in Kawasaki Disease via Integrated Analysis

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Keliang Li ◽  
Yan Jiao ◽  
Jingjing Liang ◽  
Pingping Pan ◽  
Yanji Zhu ◽  
...  

Background: The current study was done to identify key genes associated with Kawasaki disease (KD). Methods: Three datasets were collected from Gene Expression Omnibus (GEO) database. Then, differentially expressed genes (DEGs) analysis, gene ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the expression levels of DEGs in KD. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic value of DEGs. Results: In total, 2923 DEGs (1239 up- and 1684 down-regulated genes) were detected in KD. Ribosome, Leishmaniasis, and Tuberculosis significantly enriched KEGG pathways of DEGs. Six DEGs, including ADM, S100A12, ZNF438, MYD88, FCGR2A, and FCGR3B, were selected for qRT-PCR validation. Except for MYD88, the qRT-PCR results displayed similar expression patterns with that in our integrated analysis. ROC analysis revealed the diagnostic value of the six DEGs. Conclusions: Our study was expected to provide clues toward understanding the pathophysiology of KD inflammation.

2018 ◽  
Vol 7 (4) ◽  
pp. 298-307 ◽  
Author(s):  
X. Zhang ◽  
Y. Bu ◽  
B. Zhu ◽  
Q. Zhao ◽  
Z. Lv ◽  
...  

Objectives The aim of this study was to identify key pathological genes in osteoarthritis (OA). Methods We searched and downloaded mRNA expression data from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) of joint synovial tissues from OA and normal individuals. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses were used to assess the function of identified DEGs. The protein-protein interaction (PPI) network and transcriptional factors (TFs) regulatory network were used to further explore the function of identified DEGs. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to validate the result of bioinformatics analysis. Electronic validation was performed to verify the expression of selected DEGs. The diagnosis value of identified DEGs was accessed by receiver operating characteristic (ROC) analysis. Results A total of 1085 DEGs were identified. KEGG pathway analysis displayed that Wnt was a significantly enriched signalling pathway. Some hub genes with high interactions such as USP46, CPVL, FKBP5, FOSL2, GADD45B, PTGS1, and ZNF423 were identified in the PPI and TFs network. The results of qRT-PCR showed that GADD45B, ADAMTS1, and TFAM were down-regulated in joint synovial tissues of OA, which was consistent with the bioinformatics analysis. The expression levels of USP46, CPVL, FOSL2, and PTGS1 in electronic validation were compatible with the bio-informatics result. CPVL and TFAM had a potential diagnostic value for OA based on the ROC analysis. Conclusion The deregulated genes including USP46, CPVL, FKBP5, FOSL2, GADD45B, PTGS1, ZNF423, ADAMTS1, and TFAM might be involved in the pathology of OA. Cite this article: X. Zhang, Y. Bu, B. Zhu, Q. Zhao, Z. Lv, B. Li, J. Liu. Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Joint Res 2018;7:298–307. DOI: 10.1302/2046-3758.74.BJR-2017-0245.R1.


2021 ◽  
Author(s):  
Chao Peng ◽  
Shuaikai Wang ◽  
Jinxiu Yu ◽  
Xiaoyi Deng ◽  
Zhishan Chen ◽  
...  

Abstract Backgrounds: Long non-coding RNAs (lncRNAs) play important roles in tumorigenesis and progression of various cancer types; however, their roles in the development of invasive pituitary adenomas (PAs) remain to be investigated.Methods: lncRNA microarray was performed in three invasive and three noninvasive PAs. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed, and coexpression networks between lncRNA and mRNA were constructed. Furthermore, three differentially expressed lncRNAs were selected for validation by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in PA samples. The diagnostic values of these three lncRNAs were further evaluated by receiver operating characteristic (ROC) analysis.Results: A total of 8872 lncRNAs were identified in invasive and paired noninvasive PAs using lncRNA microarray. Among these, the differentially expressed lncRNAs included 81 that were upregulated and 165 that were downregulated. GO enrichment and KEGG pathway analysis showed that these differentially expressed lncRNAs were associated with post-translational modifications of proteins. Furthermore, we performed target gene prediction and coexpression analysis. The interrelationships between the lncRNAs and mRNAs with significant differential expression were identified. Additionally, three differentially expressed lncRNAs were selected for validation in 41 PA samples by qRT-PCR. The expression levels of FAM182B, LOC105371531, and LOC105375785 in the invasive PAs were significantly (P < 0.05) lower than in the noninvasive PAs, and these results were consistent with the microarray data. ROC analysis suggested that FAM182B and LOC105375785 expression levels could be used to distinguish invasive PAs from noninvasive PAs.Conclusion: Our findings demonstrated the lncRNAs expression patterns in invasive PAs. Thus, FAM182B and LOC105375785 may be involved in the invasiveness of PAs and serve as new candidate biomarkers for the diagnosis of invasive PAs.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jie Zhou ◽  
Zhiman Xie ◽  
Ping Cui ◽  
Qisi Su ◽  
Yu Zhang ◽  
...  

Background. This study is aimed at identifying unknown clinically relevant genes involved in colorectal cancer using bioinformatics analysis. Methods. Original microarray datasets GSE107499 (ulcerative colitis), GSE8671 (colorectal adenoma), and GSE32323 (colorectal cancer) were downloaded from the Gene Expression Omnibus. Common differentially expressed genes were filtered from the three datasets above. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed, followed by construction of a protein-protein interaction network to identify hub genes. Kaplan-Meier survival analysis and TIMER database analysis were used to screen the genes related to the prognosis and tumour-infiltrating immune cells of colorectal cancer. Receiver operating characteristic curves were used to assess whether the genes could be used as markers for the diagnosis of ulcerative colitis, colorectal adenoma, and colorectal cancer. Results. A total of 237 differentially expressed genes common to the three datasets were identified, of which 60 were upregulated, 125 were downregulated, and 52 genes that were inconsistently up- and downregulated. Common differentially expressed genes were mainly enriched in the cellular component of extracellular exosome and integral component of membrane categories. Eight hub genes, i.e., CXCL3, CXCL8, CEACAM7, CNTN3, SLC1A1, SLC16A9, SLC4A4, and TIMP1, were related to the prognosis and tumour-infiltrating immune cells of colorectal cancer, and these genes have diagnostic value for ulcerative colitis, colorectal adenoma, and colorectal cancer. Conclusion. Three novel genes, CNTN3, SLC1A1, and SLC16A9 were shown to have diagnostic value with respect to the occurrence of colorectal cancer and should be verified in future studies.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 67
Author(s):  
Deheng Yao ◽  
Zihao Zhang ◽  
Yukun Chen ◽  
Yuling Lin ◽  
Xuhan Xu ◽  
...  

To study the effects of Methyl jasmonates (MeJA) on rosemary suspension cells, the antioxidant enzymes’ change of activities under different concentrations of MeJA, including 0 (CK), 10 (M10), 50 (M50) and 100 μM MeJA (M100). The results demonstrated that MeJA treatments increased the activities of phenylalanine ammonla-lyase (PAL), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and polyphenol oxidase (PPO) and reduced the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), thus accelerating the ROS scavenging. Comparative transcriptome analysis of different concentrations of MeJA showed that a total of 7836, 6797 and 8310 genes were differentially expressed in the comparisons of CKvsM10, CKvsM50, CKvsM100, respectively. The analysis of differentially expressed genes (DEGs) showed phenylpropanoid biosynthesis, vitamin B6, ascorbate and aldarate metabolism-related genes were significantly enriched. The transcripts of flavonoid and terpenoid metabolism pathways and plant hormone signal transduction, especially the jasmonic acid (JA) signal-related genes, were differentially expressed in CKvsM50 and CKvsM100 comparisons. In addition, the transcription factors (TFs), e.g., MYC2, DELLA, MYB111 played a key role in rosemary suspension cells under MeJA treatments. qRT-PCR of eleven DEGs showed a high correlation between the RNA-seq and the qRT-PCR result. Taken together, MeJA alleviated peroxidative damage of the rosemary suspension cells in a wide concentration range via concentration-dependent differential expression patterns. This study provided a transcriptome sequence resource responding to MeJA and a valuable resource for the genetic and genomic studies of the active compounds engineering in rosemary.


2016 ◽  
Author(s):  
Shaoyin Fu ◽  
YunXia Qi ◽  
Xiaolong He ◽  
Lai Da ◽  
biao Wang ◽  
...  

AbstractWool is one of the most important animal fibers in the textile industry and the diameter directly affects its economic value. However, the molecular mechanisms underlying the wool diameter have not been fully elucidated. In the present study, high-throughput RNA-Seq technology was employed to explore the skin transcriptome using 3 sheep with fine wool (fiber diameter, FD<21.0μm) and 3 sheep with coarse wool (fiber diameter, FD>27.0μm). In total, 28,607,228 bp clean reads were obtained, and 78.88%+/-3.84% was uniquely aligned to the reference genome across the six samples. In total, 19,914 mRNA transcripts were expressed (FPKM>0) in the six skin samples, among which there were certain well-known genes affecting the skin hair cycle, such as KRTAP7-1, KRT14, Wnt10b, Wnt2b, β-catenin, and FGF5. Furthermore, 467 expressed genes were significantly differentially expressed between the two groups, including 21 genes up-regulated and 446 genes down-regulated in the sheep with the smaller fiber diameter. To verify the results, 13 differentially expressed genes were randomly selected to validate the expression patterns using qRT-PCR, and the correlation between the mRNA expression level from qRT-PCR and RNA-Seq data was 0.999 ( P<0.05). These differentially expressed genes were particularly enriched in GO processes related to lipid metabolism, skin development, differentiation, and immune function (P<0.05). The biological processes were involved in collagen catabolism, negative regulation of macromolecule metabolism, steroid hormone stimulation and lipid metabolism. A significant KEGG pathway involving the “metabolism of lipids and lipoproteins” was also enriched. This study revealed that the lipid metabolism might constitute one of the major factors related to wool diameter.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Zihao Xu ◽  
Zilong Wu ◽  
Jingtao Zhang ◽  
Ruihao Zhou ◽  
Jiane Wu ◽  
...  

Objective. To explore multiscale integrated analysis methods in identifying key regulators of esophageal cancer (ESCA). Methods. We downloaded the ESCA dataset from The Cancer Genome Atlas (TCGA) database, which contained RNA-seq data, miRNA-seq data, methylation data, and clinical phenotype information. Then, we combined ESCA-related genes from the NCBI-GENE and OMIM databases and RNA-seq dataset from TCGA to analyze differentially expressed genes (DEGs). Meanwhile, differentially expressed miRNAs (DEmiRNAs) and genes with differential methylation levels were identified. The pivot–module pairs were established using the RAID v2.0 database and TRRUST v2 database. Next, the multifactor-regulated functional network was constructed based on the above information. Additionally, gene corresponding targeted drug information was obtained from the DrugBank database. Moreover, we further screened regulators by assessing their diagnostic value and prognostic value, especially the value of distinguishing patients at TNM I stage from normal patients. In addition, the external database from the Gene Expression Omnibus (GEO) database was used for validation. Lastly, gene set enrichment analysis (GSEA) was performed to explore the potential biological functions of key regulators. Results. Our study indicated that CXCL8, CYP2C8, and E2F1 had excellent diagnostic and prognostic values, which may be potential regulators of ESCA. At the same time, the good early diagnosis ability of the three regulators also provided new insights for the diagnosis and early treatment of ESCA patients. Conclusion. We develop a multiscale integrated analysis and suggest that CXCL8, CYP2C8, and E2F1 are promising regulators with good diagnostic and prognostic values in ESCA.


2021 ◽  
Vol 13 (4) ◽  
Author(s):  
Camilla A Santos ◽  
Gabriel G Sonoda ◽  
Thainá Cortez ◽  
Luiz L Coutinho ◽  
Sónia C S Andrade

Abstract Understanding how selection shapes population differentiation and local adaptation in marine species remains one of the greatest challenges in the field of evolutionary biology. The selection of genes in response to environment-specific factors and microenvironmental variation often results in chaotic genetic patchiness, which is commonly observed in rocky shore organisms. To identify these genes, the expression profile of the marine gastropod Littoraria flava collected from four Southeast Brazilian locations in ten rocky shore sites was analyzed. In this first L. flava transcriptome, 250,641 unigenes were generated, and 24% returned hits after functional annotation. Independent paired comparisons between 1) transects, 2) sites within transects, and 3) sites from different transects were performed for differential expression, detecting 8,622 unique differentially expressed genes. Araçá (AR) and São João (SJ) transect comparisons showed the most divergent gene products. For local adaptation, fitness-related differentially expressed genes were chosen for selection tests. Nine and 24 genes under adaptative and purifying selection, respectively, were most related to biomineralization in AR and chaperones in SJ. The biomineralization-genes perlucin and gigasin-6 were positively selected exclusively in the site toward the open ocean in AR, with sequence variants leading to pronounced protein structure changes. Despite an intense gene flow among L. flava populations due to its planktonic larva, gene expression patterns within transects may be the result of selective pressures. Our findings represent the first step in understanding how microenvironmental genetic variation is maintained in rocky shore populations and the mechanisms underlying local adaptation in marine species.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1480
Author(s):  
Hiresh Ayoubian ◽  
Joana Heinzelmann ◽  
Sebastian Hölters ◽  
Oybek Khalmurzaev ◽  
Alexey Pryalukhin ◽  
...  

Although microRNAs are described as promising biomarkers in many tumor types, little is known about their role in PSCC. Thus, we attempted to identify miRNAs involved in tumor development and metastasis in distinct histological subtypes considering the impact of HPV infection. In a first step, microarray analyses were performed on RNA from formalin-fixed, paraffin-embedded tumor (22), and normal (8) tissue samples. Microarray data were validated for selected miRNAs by qRT-PCR on an enlarged cohort, including 27 tumor and 18 normal tissues. We found 876 significantly differentially expressed miRNAs (p ≤ 0.01) between HPV-positive and HPV-negative tumor samples by microarray analysis. Although no significant differences were detected between normal and tumor tissue in the whole cohort, specific expression patterns occurred in distinct histological subtypes, such as HPV-negative usual PSCC (95 differentially expressed miRNAs, p ≤ 0.05) and HPV-positive basaloid/warty subtypes (247 differentially expressed miRNAs, p ≤ 0.05). Selected miRNAs were confirmed by qRT-PCR. Furthermore, microarray data revealed 118 miRNAs (p ≤ 0.01) that were significantly differentially expressed in metastatic versus non-metastatic usual PSCC. The lower expression levels for miR-137 and miR-328-3p in metastatic usual PSCC were validated by qRT-PCR. The results of this study confirmed that specific miRNAs could serve as potential diagnostic and prognostic markers in single PSCC subtypes and are associated with HPV-dependent pathways.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2311
Author(s):  
Hao Ding ◽  
Yueyue Lin ◽  
Tao Zhang ◽  
Lan Chen ◽  
Genxi Zhang ◽  
...  

The mechanisms behind the gene expression and regulation that modulate the development and growth of pigeon skeletal muscle remain largely unknown. In this study, we performed gene expression analysis on skeletal muscle samples at different developmental and growth stages using RNA sequencing (RNA−Seq). The differentially expressed genes (DEGs) were identified using edgeR software. Weighted gene co−expression network analysis (WGCNA) was used to identify the gene modules related to the growth and development of pigeon skeletal muscle based on DEGs. A total of 11,311 DEGs were identified. WGCNA aggregated 11,311 DEGs into 12 modules. Black and brown modules were significantly correlated with the 1st and 10th day of skeletal muscle growth, while turquoise and cyan modules were significantly correlated with the 8th and 13th days of skeletal muscle embryonic development. Four mRNA−mRNA regulatory networks corresponding to the four significant modules were constructed and visualised using Cytoscape software. Twenty candidate mRNAs were identified based on their connectivity degrees in the networks, including Abca8b, TCONS−00004461, VWF, OGDH, TGIF1, DKK3, Gfpt1 and RFC5, etc. A KEGG pathway enrichment analysis showed that many pathways were related to the growth and development of pigeon skeletal muscle, including PI3K/AKT/mTOR, AMPK, FAK, and thyroid hormone pathways. Five differentially expressed genes (LAST2, MYPN, DKK3, B4GALT6 and OGDH) in the network were selected, and their expression patterns were quantified by qRT−PCR. The results were consistent with our sequencing results. These findings could enhance our understanding of the gene expression and regulation in the development and growth of pigeon muscle.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Yunxiao Wei ◽  
Guoliang Li ◽  
Shujiang Zhang ◽  
Shifan Zhang ◽  
Hui Zhang ◽  
...  

Allopolyploidy is an evolutionary and mechanistically intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the gene expression patterns of eight F2 synthetic Brassica napus using RNA sequencing. We found that B. napus allopolyploid formation was accompanied by extensive changes in gene expression. A comparison between F2 and the parent shows a certain proportion of differentially expressed genes (DEG) and activation\silent gene, and the two genomes (female parent (AA)\male parent (CC) genomes) showed significant differences in response to whole-genome duplication (WGD); non-additively expressed genes represented a small portion, while Gene Ontology (GO) enrichment analysis showed that it played an important role in responding to WGD. Besides, genome-wide expression level dominance (ELD) was biased toward the AA genome, and the parental expression pattern of most genes showed a high degree of conservation. Moreover, gene expression showed differences among eight individuals and was consistent with the results of a cluster analysis of traits. Furthermore, the differential expression of waxy synthetic pathways and flowering pathway genes could explain the performance of traits. Collectively, gene expression of the newly formed allopolyploid changed dramatically, and this was different among the selfing offspring, which could be a prominent cause of the trait separation. Our data provide novel insights into the relationship between the expression of differentially expressed genes and trait segregation and provide clues into the evolution of allopolyploids.


Sign in / Sign up

Export Citation Format

Share Document