scholarly journals Chemical composition and in vitro herbicidal activity of five essential oils on Johnson grass (Sorghum halepense [L.] Pers.)

2018 ◽  
pp. 44-50 ◽  
Author(s):  
Ana Matković ◽  
Tatjana Marković ◽  
Sava Vrbničanin ◽  
Marija Sarić-Krsmanović ◽  
Dragana Božić
2008 ◽  
Vol 14 (S3) ◽  
pp. 148-149 ◽  
Author(s):  
M. Zuzarte ◽  
A.M. Dinis ◽  
C. Cavaleiro ◽  
J. Canhoto ◽  
L. Salgueiro

The selection of native Lavandula species and their economic exploitation have increased in the last few years. Micropropagation techniques have been used as an alternative for vegetative propagation allowing the multiplication of selected genotypes and chemotypes. Our previous studies showed that the essential oils of Lavandula pedunculata have an important antifungal activity against dermatophyte strains. Therefore, a new line of investigation concerning the in vitro culture of this species is justified. In the present study we compare the morphology of the leaf trichomes and the chemical composition of their essential oils in both field-growing and in vitro propagated plants.


2018 ◽  
Vol 73 (7-8) ◽  
pp. 313-318 ◽  
Author(s):  
Rose Vanessa Bandeira Reidel ◽  
Simona Nardoni ◽  
Francesca Mancianti ◽  
Claudia Anedda ◽  
Abd El-Nasser G. El Gendy ◽  
...  

Abstract The objective of the present paper was the assessment of the chemical composition of the essential oils from four Asteraceae species with a considerable food, medicinal, and agricultural value, collected in Egypt, together with their in vitro inhibitory activity against molds and yeasts. The essential oil of Launaea cornuta flowers was also evaluated for the first time, but because of its very low yield (<0.01%), no antifungal test was performed.


2018 ◽  
Vol 123 ◽  
pp. 638-645 ◽  
Author(s):  
Vanessa Paula da Silva ◽  
Cassia Cristina Fernandes Alves ◽  
Mayker Lazaro Dantas Miranda ◽  
Lizandra Czermainski Bretanha ◽  
Maira Pereira Balleste ◽  
...  

Author(s):  
Fatima El Kamari ◽  
Amal Taroq ◽  
Yassine El Atki ◽  
Imane Aouam ◽  
Badiaa Lyoussi ◽  
...  

Objective: The aim of the current study is to determine the chemical composition and evaluate antibacterial activity of Vitex agnus-castus L. (VAC) essential oils against some bacteria causing nosocomial infections in the neonatal and intensive care rooms at the university hospital center of Fez Morocco. Methods: The phytochemical screening of essential oils was determined using gas chromatography (GC) and GC-mass spectrometry analysis. The antibacterial test was evaluated against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria species (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis) using disc diffusion method. Results: Twenty-nine components were identified in the fruits’ oil representing 93.1% of total oil. The major components in the fruits oil are 1,8-cineole (11.6%), α-thujene (9.3%), phyllocladene (8.2%), α-pinene (7.9%), caryophyllene (5.9%), and cubenol (5%). Furthermore, 28 components were identified in the leaf essential oil. The main component was caryophyllene (9.5%), followed by 1,8-cineole (8.7%), manoyl oxide (7.3%), eugenyl acetate (7.1%), phyllocladene (6.8%), and α-pinene (5.2%). Antibacterial activity of both oils showed a strong activity against nosocomial bacteria tested. Conclusion: Essential oils of Moroccan VAC could be exploited as natural drugs for bacteria, especially those who have acquired resistance to conventional antibiotics.


2005 ◽  
Vol 60 (1-2) ◽  
pp. 30-34 ◽  
Author(s):  
Ali Sonboli ◽  
Fereshteh Eftekhar ◽  
Morteza Yousefzadi ◽  
Mohammad Reza Kanani

The chemical composition of the essential oils obtained from two samples (GP1 and GP2) of Grammosciadium platycarpum Boiss. was analyzed by GC and GC-MS. The analysis of the oils resulted in the identification of twenty-two constituents. Linalool (79.0% - GP1, 81.8% - GP2) and limonene (10.0%, 5.8%) were found to be the major components, respectively. The in vitro antibacterial activities of these oils and their main compounds against seven Gram-positive and Gram-negative bacteria were investigated. The results exhibited that the total oils and their major components possess strong to moderate activities against all the tested bacteria except for Pseudomonas aeruginosa.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3532
Author(s):  
Ben Salha ◽  
Herrera Díaz ◽  
Lengliz ◽  
Abderrabba ◽  
Labidi

In this study, Carum carvi L. essential oil (CEO) and Origanum majorana L. essential oil (MEO) was steam-distillated under reduced pressure. We henceforth obtained three fractions for each essential oil: CF1, CF2, CF3, MF1, MF2, and MF3. Then, these fractions were characterized using the gas chromatography–mass spectrometry (GC-MS) technique. The results indicated that some fractions were rich in oxygenated compounds (i.e., CF2, CF3, MF2, and MF3) with concentrations ranging from 79.21% to 98.56%. Therefore, the influence of the chemical composition of the essential oils on their antifungal activity was studied. For this purpose, three food spoilage fungi were isolated, identified, and inoculated in vitro, in order to measure the antifungal activity of CEO, MEO, and their fractions. The results showed that stronger fungi growth inhibitions (FGI) (above 95%) were found in fractions with higher percentages of oxygenated compounds, especially with (−)-carvone and terpin-4-ol as the major components. Firstly, this work reveals that the free-terpenes hydrocarbons fractions obtained from MEO present higher antifungal activity than the raw essential oil against two families of fungi. Then, it suggests that the isolation of (−)-carvone (97.15 ± 5.97%) from CEO via vacuum distillation can be employed successfully to improve antifungal activity by killing fungi (FGI = 100%). This study highlights that separation under reduced pressure is a simple green method to obtain fractions or to isolate compounds with higher biological activity useful for pharmaceutical products or natural additives in formulations.


2019 ◽  
Vol 47 (4) ◽  
pp. 1374-1381
Author(s):  
Aya MAALOUL ◽  
Mercedes VERDEGUER SANCHO ◽  
Martina ODDO ◽  
Ezzeddine SAADAOUI ◽  
Monia JEBRI ◽  
...  

Water shortage throughout the world, especially in arid regions in the later decades has led to search for alternatives to save potable fresh water. Treated wastewater (TWW) appears to be an opportunity for irrigation. However, it could represent a stress factor for plants, and influence their metabolism, changing their secondary metabolites and, consequently, their biological properties. Eucalyptus camaldulensis essential oil (EO) had been reported to possess phytotoxic activity. The main objective of this work was to compare the chemical composition and herbicidal activity of E. camaldulensis EO obtained from leaves of young plants and old trees irrigated with well water (WW) and TWW. Germination tests were performed in vitro against Amaranthus hybridus, Chenopodium album, Echinochloa crus-galli and Lolium perenne. The EOs composition was analyzed by gas chromatography and gas chromatography/mass spectrometry. A high percentage of oxygenated monoterpenes, with 1,8-cineole as main compound, was found in the EOs from leaves of young plants irrigated with both types of water. The EO from leaves of old trees irrigated with WW contained a main fraction of monoterpene hydrocarbons (45.17%) with p-cymene as principal compound. The highest herbicidal potential was shown by the EO from young plants irrigated with TWW. It completely inhibited A. hybridus and L. perenne germination, and nearly blocked the others at all concentrations assayed. It also showed strong phytotoxic activity on seedling length. The results suggest the possible use of TWW to irrigate Eucalyptus crops as it enhances the EOs herbicidal potential that could be used as natural herbicides.   In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue.


2016 ◽  
Vol 44 (2) ◽  
pp. 466-471 ◽  
Author(s):  
Melih YILAR ◽  
Yusuf BAYAN ◽  
Abdurrahman ONARAN

The purpose of this study was to assess the effectiveness of essential plant oils from Vitex agnus-castus L. (VAC) and Myrtus communis L. against the plant pathogens, Fusarium oxysporum f. sp. radicis-lycopersici (Sacc.) W.C. Synder & H.N. Hans, Rhizoctonia solani J.G. Kühn., Sclerotinia sclerotiorum (Lib.) de Bary and Verticillium dahliae Kleb., and to determine the chemical composition of the compounds in these essential oils. GC/MS analysis was identified 25 different compounds in VAC essential oil, while the main compounds were determined as Eucalyptol (17.75%), β-Caryophyllene (13.21%) and Spathulenol (10.41%). On the other hand, the essential oil of M. communis, consisted of 16 different compounds which were Eucalyptol (49.15%), Myrtenol (19.49%) and α-Pinene (8.38%) being its main compounds. An assessment of antifungal activity was performed under in vitro conditions. Plant pathogens were inoculated onto Petri dishes (60 mm) containing PDA medium (10 mL/Petri-1), and plant essential oils were applied at concentrations of 0.5, 1, 1.5, 2, 5 and 10 (μL/Petri-1) into the 5 mm diameter wells opened on the Petri dish surface. After that, the Petri dishes incubated at 22±2 °C. The results of this study, the essential oil of M. communis, at a dose of 10 μL/ Petri, inhibited the 100% mycelium growth of V. dahliae, S. sclerotiorum and R. solani. The highest dose of VAC essential oil was also 100% inhibited V. dahliae and S. sclerotiorum. The LC50 and LC90 values of M. communis and VAC essential oil calculated for V. dahliae, FORL, S. sclerotiorum and R. solani. This plant extracts were shown by in vitro conditions to be potential antifungal agents.


Sign in / Sign up

Export Citation Format

Share Document