Homology modeling of microbial Nattokinase enzyme, An Anti-blood clotting (Fibrinolytic) agent using computational tools

2020 ◽  
Vol 13 (9) ◽  
pp. 4135
Author(s):  
P. Praveen Reddy
Author(s):  
Hina Bansal ◽  
Neetu Jabalia

Objective: The objective of our investigation is to apply computational tools for a protein sodium-dependent serotonin transporter (SERT). It plays a role in sudden infant death syndrome, aggressive behavior in Alzheimer disease, and depression-susceptibility. Although various conventional and experimental therapies have been directed for the treatment, still it needs attention for more effective treatments. Toward this pursuit, we performed in silico analysis of the protein using computational tools and servers.Methods: Homology modeling approach has been used to define the tertiary structure of the protein using SWISS-MODEL workspace. Modal validation was done to verify the generated modal. Furthermore, primary and secondary structural and functional analysis was performed to provide more perceptions into the selected protein. The protein disorder analysis was performed using PrDOS server.Results: The results of the primary structure analyses suggested that SERT is an acidic and hydrophobic protein in nature. It is structurally stable. The secondary structural analysis results revealed that random coils dominated among secondary structure elements. The homology modeling showed that the QMEAN score of the model was −5.17, and the sequence identity was 52%. Validation protein models using Rampage revealed that more that 95.9% residues were in favored regions. The protein disorder detected by PrDOS showed the total disorder amino acid residues were 89 (14.1%).Conclusion: The study provides valuable clues for initiation of experimental characterization of this protein and throws light on some novel insights into the structural features of sodium-dependent SERT protein from Homo sapiens. This will also helpful in conducting docking studies for the receptor protein against various drug molecules. 


2000 ◽  
Vol 110 (3) ◽  
pp. 296-302
Author(s):  
Louise E. Anderson ◽  
Alex Dong Li ◽  
Elizabeth H. Muslin ◽  
Marianne Schiffer ◽  
Fred J. Stevens
Keyword(s):  

1988 ◽  
Vol 60 (02) ◽  
pp. 205-208 ◽  
Author(s):  
Paul A Kyrle ◽  
Felix Stockenhuber ◽  
Brigitte Brenner ◽  
Heinz Gössinger ◽  
Christian Korninger ◽  
...  

SummaryThe formation of prostacyclin (PGI2) and thromboxane A2 and the release of beta-thromboglobulin (beta-TG) at the site of platelet-vessel wall interaction, i.e. in blood emerging from a standardized injury of the micro vasculature made to determine bleeding time, was studied in patients with end-stage chronic renal failure undergoing regular haemodialysis and in normal subjects. In the uraemic patients, levels of 6-keto-prostaglandin F1α (6-keto-PGF1α) were 1.3-fold to 6.3-fold higher than the corresponding values in the control subjects indicating an increased PGI2 formation in chronic uraemia. Formation of thromboxane B2 (TxB2) at the site of plug formation in vivo and during whole blood clotting in vitro was similar in the uraemic subjects and in the normals excluding a major defect in platelet prostaglandin metabolism in chronic renal failure. Significantly smaller amounts of beta-TG were found in blood obtained from the site of vascular injury as well as after in vitro blood clotting in patients with chronic renal failure indicating an impairment of the a-granule release in chronic uraemia. We therefore conclude that the haemorrhagic diathesis commonly seen in patients with chronic renal failure is - at least partially - due to an acquired defect of the platelet a-granule release and an increased generation of PGI2 in the micro vasculature.


1966 ◽  
Vol 15 (03/04) ◽  
pp. 591-602 ◽  
Author(s):  
R. G Macfarlane
Keyword(s):  

1968 ◽  
Vol 20 (01/02) ◽  
pp. 078-087 ◽  
Author(s):  
H. C Hemker ◽  
A. D Muller

SummaryPIVKA, the circulating anticoagulant protein found in vitamin K deficiency can, on kinetical grounds, be recognized as an analogue of factor X. The existence of analogues of other vitamin K-dependent clotting factors cannot be ruled out, but need not be assumed to explain the experimental results.


Sign in / Sign up

Export Citation Format

Share Document