scholarly journals CXCR4 induces podocyte injury and proteinuria by activating β-catenin signaling

Theranostics ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 767-781
Author(s):  
Hongyan Mo ◽  
Qian Ren ◽  
Dongyan Song ◽  
Bo Xu ◽  
Dong Zhou ◽  
...  
Keyword(s):  
2021 ◽  
pp. 1-7
Author(s):  
Yon Hee Kim ◽  
Kyu Ha Huh ◽  
Beom Jin Lim ◽  
Beom Seok Kim ◽  
Yu Seun Kim ◽  
...  
Keyword(s):  

2020 ◽  
Vol 48 (12) ◽  
pp. 030006052097142
Author(s):  
Xiao-qing Yang ◽  
Sheng-you Yu ◽  
Li Yu ◽  
Lin Ge ◽  
Yao Zhang ◽  
...  

Objective To investigate the mechanism through which tacrolimus, often used to treat refractory nephropathy, protects against puromycin-induced podocyte injury. Methods An in vitro model of puromycin-induced podocyte injury was established by dividing podocytes into three groups: controls, puromycin only (PAN group), and puromycin plus tacrolimus (FK506 group). Podocyte morphology, number, apoptosis rate and microtubule associated protein 1 light chain 3 alpha ( LC3) expression were compared. Results Puromycin caused podocyte cell body shrinkage and loose intercellular connections, but podocyte morphology in the FK506 group was similar to controls. The apoptosis rate was lower in the FK506 group versus PAN group. The low level of LC3 mRNA observed in untreated podocytes was decreased by puromycin treatment; however, levels of LC3 mRNA were higher in the FK506 group versus PAN group. Although LC3-I and LC3-II protein levels were decreased by puromycin, levels in the FK506 group were higher than the PAN group. Fewer podocyte autophagosomes were observed in the control and FK506 groups versus the PAN group. Cytoplasmic LC3-related fluorescence intensity was stronger in control and FK506 podocytes versus the PAN group. Conclusions Tacrolimus inhibited puromycin-induced mouse podocyte damage by regulating LC3 expression and enhancing autophagy.


Author(s):  
Yoshiyasu Fukusumi ◽  
Hidenori Yasuda ◽  
Ying Zhang ◽  
Hiroshi Kawachi
Keyword(s):  

2021 ◽  
Vol 22 (14) ◽  
pp. 7642
Author(s):  
Zoran V. Popovic ◽  
Felix Bestvater ◽  
Damir Krunic ◽  
Bernhard K. Krämer ◽  
Raoul Bergner ◽  
...  

The CD73 pathway is an important anti-inflammatory mechanism in various disease settings. Observations in mouse models suggested that CD73 might have a protective role in kidney damage; however, no direct evidence of its role in human kidney disease has been described to date. Here, we hypothesized that podocyte injury in human kidney diseases alters CD73 expression that may facilitate the diagnosis of podocytopathies. We assessed the expression of CD73 and one of its functionally important targets, the C-C chemokine receptor type 2 (CCR2), in podocytes from kidney biopsies of 39 patients with podocytopathy (including focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous glomerulonephritis (MGN) and amyloidosis) and a control group. Podocyte CD73 expression in each of the disease groups was significantly increased in comparison to controls (p < 0.001–p < 0.0001). Moreover, there was a marked negative correlation between CD73 and CCR2 expression, as confirmed by immunohistochemistry and immunofluorescence (Pearson r = −0.5068, p = 0.0031; Pearson r = −0.4705, p = 0.0313, respectively), thus suggesting a protective role of CD73 in kidney injury. Finally, we identify CD73 as a novel potential diagnostic marker of human podocytopathies, particularly of MCD that has been notorious for the lack of pathological features recognizable by light microscopy and immunohistochemistry.


Nefrología ◽  
2021 ◽  
Author(s):  
Ying Zhang ◽  
Yoshiyasu Fukusumi ◽  
Mutsumi Kayaba ◽  
Takashi Nakamura ◽  
Ryusuke Sakamoto ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shanwen Li ◽  
Yiwen Liu ◽  
Xiaowei He ◽  
Xiagang Luo ◽  
Huimin Shi ◽  
...  

Idiopathic nephrotic syndrome (INS) is a disease involving injury to podocytes in the glomerular filtration barrier, and its specific causes have not been elucidated. Transfer RNA-derived fragments (tRFs), products of precise tRNA cleavage, have been indicated to play critical roles in various diseases. Currently, there is no relevant research on the role of tRFs in INS. This study intends to explore the changes in and importance of tRFs during podocyte injury in vitro and to further analyze the potential mechanism of INS. Differentially expressed tRFs in the adriamycin-treated group were identified by high-throughput sequencing and further verified by quantitative RT-PCR. In total, 203 tRFs with significant differential expression were identified, namely, 102 upregulated tRFs and 101 downregulated tRFs (q<0.05, ∣log2FC∣≥2). In particular, AS-tDR-008924, AS-tDR-011690, tDR-003634, AS-tDR-013354, tDR-011031, AS-tDR-001008, and AS-tDR-007319 were predicted to be involved in podocyte injury by targeting the Gpr, Wnt, Rac1, and other genes. Furthermore, gene ontology analysis showed that these differential tRFs were strongly associated with podocyte injury processes such as protein binding, cell adhesion, synapses, the actin cytoskeleton, and insulin-activate receptor activity. KEGG pathway analysis predicted that they participated in the PI3K-Akt signaling pathway, Wnt signaling pathway, and Ras signaling pathway. It was reported that these pathways contribute to podocyte injury. In conclusion, our study revealed that changes in the expression levels of tRFs might be involved in INS. Seven of the differentially expressed tRFs might play important roles in the process of podocyte injury and are worthy of further study.


Sign in / Sign up

Export Citation Format

Share Document