Structural Imperfections of the Hydroxyapatite Surface Layer to Engineer Its Electrical Potential

2021 ◽  
Author(s):  
◽  
Anna Bystrova

The Doctoral Thesis aims to identify the influence of hydroxyapatite (Hap) defects (such as OH-group, H-, O-vacancies, H-interstitials, and their combination) on the electrical potential of HAp’s surface which influences biocompatibility and control cell adhesion. HAp contains various structural imperfections (defects) and has a non-stoichiometric composition. The structural imperfections induce the heterogeneity of the surface electrical potential. However, the role of the defects OH-group, H-, O-vacancies, H-interstitials, and their combination in the formation of HAp surface polarization and their influence on HAp surface charge, energy band structure and electron work function has not yet been investigated. In this Thesis, for the first time the theoretical and experimental approaches were used to investigate the influence of structural imperfections (OH-, H-, O-vacancies, H-interstitials, and hydrogen atoms filling unsaturated hydrogen bonds) on HAp electrical properties. The computer simulations of HAp structures analyse the properties of these effects. Semiempirical methods of molecular mechanics and quantum mechanics, as well as methods of density functional theory were employed. The experimental studies of the HAp surface electrical properties were carried out by photoluminescence (PL) emission, synchrotron excitation spectroscopy, threshold photoelectron (PE) emission spectroscopy. The influence of annealing, hydrogenation, microwave, gamma irradiation and their combination on HAp defects was investigated experimentally for the first time. The obtained results are in accordance with computational data. The achieved results will help to improve technologies to engineer the surface charge of Hap.

2018 ◽  
Vol 60 (1) ◽  
pp. 187
Author(s):  
В.Л. Бекенев ◽  
С.М. Зубкова

AbstractThe atomic and electron structure of four variants of polar (111)-(2 × 2) surfaces in ZnSe and CdSe terminated by a cation, namely, the ideal, relaxed, reconstructed, and relaxed after reconstruction surfaces, are calculated for the first time from the first principles. The surface is simulated by a film with a thickness of 12 atomic layers and a vacuum gap of ~16 Å in the layered superlattice approximation. Four fictitious hydrogen atoms with a charge of 0.5 electrons each are added for closing dangling Se bonds on the opposite side of the film. Ab initio calculations are performed using the QUANTUM ESPRESSO software based on the density functional theory. It is shown that relaxation results in splitting of atomic layers. We calculate and analyze the band structures and total and layer-wise densities of electron states for four variants of the surface.


2020 ◽  
Vol 310 ◽  
pp. 29-33
Author(s):  
Sarantuya Nasantogtokh ◽  
Xin Cui ◽  
Zhi Ping Wang

The electronic and magnetic properties of palladium hydrogen are investigated using first-principles spin-polarized density functional theory. By studying the magnetic moments and electronic structures of hydrogen atoms diffusing in face-centered cubic structure of transition metal Pd, we found that the results of magnetic moments are exactly the same in the two direct octahedral interstitial site-octahedral interstitial site diffusion paths-i.e. the magnetic moments are the largest in the octahedral interstitial site, and the magnetic moments are the lowest in saddle point positions. We also studied on the density of states of some special points, with the result that the density of states near the Fermi level is mainly contributed by 4d electrons of Pd and the change of magnetic moments with the cell volume in the unit cell of transition metal Pd with a hydrogen atom.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1314
Author(s):  
Mykola Moroz ◽  
Fiseha Tesfaye ◽  
Pavlo Demchenko ◽  
Myroslava Prokhorenko ◽  
Nataliya Yarema ◽  
...  

Equilibrium phase formations below 600 K in the parts Ag2Te–FeTe2–F1.12Te–Ag2Te and Ag8GeTe6–GeTe–FeTe2–AgFeTe2–Ag8GeTe6 of the Fe–Ag–Ge–Te system were established by the electromotive force (EMF) method. The positions of 3- and 4-phase regions relative to the composition of silver were applied to express the potential reactions involving the AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 compounds. The equilibrium synthesis of the set of phases was performed inside positive electrodes (PE) of the electrochemical cells: (−)Graphite ‖LE‖ Fast Ag+ conducting solid-electrolyte ‖R[Ag+]‖PE‖ Graphite(+), where LE is the left (negative) electrode, and R[Ag+] is the buffer region for the diffusion of Ag+ ions into the PE. From the observed results, thermodynamic quantities of AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 were experimentally determined for the first time. The reliability of the division of the Ag2Te–FeTe2–F1.12Te–Ag2Te and Ag8GeTe6–GeTe–FeTe2–AgFeTe2–Ag8GeTe6 phase regions was confirmed by the calculated thermodynamic quantities of AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 in equilibrium with phases in the adjacent phase regions. Particularly, the calculated Gibbs energies of Ag2FeGeTe4 in two different adjacent 4-phase regions are consistent, which also indicates that it has stoichiometric composition.


2021 ◽  
pp. 1-6
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pomalidomide Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Pomalidomide Form I crystallizes in the space group P-1 (#2) with a = 7.04742(9), b = 7.89103(27), c = 11.3106(6) Å, α = 73.2499(13), β = 80.9198(9), γ = 88.5969(6)°, V = 594.618(8) Å3, and Z = 2. The crystal structure is characterized by the parallel stacking of planes parallel to the bc-plane. Hydrogen bonds link the molecules into double layers also parallel to the bc-plane. Each of the amine hydrogen atoms acts as a donor to a carbonyl group in an N–H⋯O hydrogen bond, but only two of the four carbonyl groups act as acceptors in such hydrogen bonds. Other carbonyl groups participate in C–H⋯O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
Vol 7 (2) ◽  
pp. eabd4248
Author(s):  
Fengmiao Li ◽  
Yuting Zou ◽  
Myung-Geun Han ◽  
Kateryna Foyevtsova ◽  
Hyungki Shin ◽  
...  

Titanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti2+. We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state. We observe a transition to the superconducting phase below 0.5 K close to that of Ti metal. Density functional theory (DFT) and a DFT-based tight-binding model demonstrate the extreme importance of direct Ti–Ti bonding in TiO, suggesting that similar superconductivity exists in TiO and Ti metal. Our work introduces the new concept that TiO behaves more similar to its metal counterpart, distinguishing it from other 3d transition-metal monoxides.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2955
Author(s):  
Aleksandra Bartkowiak ◽  
Oleksandr Korolevych ◽  
Gian Luca Chiarello ◽  
Malgorzata Makowska-Janusik ◽  
Maciej Zalas

A series of pure and doped TiO2 nanomaterials with different Zr4+ ions content have been synthesized by the simple sol-gel method. Both types of materials (nanopowders and nanofilms scratched off of the working electrode’s surface) have been characterized in detail by XRD, TEM, and Raman techniques. Inserting dopant ions into the TiO2 structure has resulted in inhibition of crystal growth and prevention of phase transformation. The role of Zr4+ ions in this process was explained by performing computer simulations. The three structures such as pure anatase, Zr-doped TiO2, and tetragonal ZrO2 have been investigated using density functional theory extended by Hubbard correction. The computational calculations correlate well with experimental results. Formation of defects and broadening of energy bandgap in defected Zr-doped materials have been confirmed. It turned out that the oxygen vacancies with substituting Zr4+ ions in TiO2 structure have a positive influence on the performance of dye-sensitized solar cells. The overall photoconversion efficiency enhancement up to 8.63% by introducing 3.7% Zr4+ ions into the TiO2 has been confirmed by I-V curves, EIS, and IPCE measurements. Such efficiency of DSSC utilizing the working electrode made by Zr4+ ions substituted into TiO2 material lattice has been for the first time reported.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 553
Author(s):  
Jinjing Zhang ◽  
Jutao Hu ◽  
Haiyan Xiao ◽  
Huahai Shen ◽  
Lei Xie ◽  
...  

The desorption behaviors of hydrogen from high entropy alloy TiZrVMoNb hydride surface have been investigated using the density functional theory. The (110) surface has been determined to be the most preferable surface for hydrogen desorption from TiZrVMoNb hydride. Due to the high lattice distortion and heterogeneous chemical environment in HEA hydride, hydrogen desorption from the HEA hydride surface is found to be complex. A comparison of molecular and atomic hydrogen desorption reveals that hydrogen prefers to desorb in atomic states from TiZrVMoNb hydride (110) surface rather than molecular states during the hydrogen desorption process. To combine as H2 molecules, the hydrogen atoms need to overcome attractive interaction from TiZrVMoNb hydride (110) surface. These results suggest that the hydrogen desorption on TiZrVMoNb hydride (110) surface is a chemical process. The presented results provide fundamental insights into the underlying mechanism for hydrogen desorption from HEA hydride surface and may open up more possibilities for designing HEAs with excellent hydrogen desorption ability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huynh Anh Huy ◽  
Quoc Duy Ho ◽  
Truong Quoc Tuan ◽  
Ong Kim Le ◽  
Nguyen Le Hoai Phuong

AbstractUsing density functional theory (DFT), we performed theoretical investigation on structural, energetic, electronic, and magnetic properties of pure armchair silicene nanoribbons with edges terminated with hydrogen atoms (ASiNRs:H), and the absorptions of silicon (Si) atom(s) on the top of ASiNRs:H. The calculated results show that Si atoms prefer to adsorb on the top site of ASiNRs:H and form the single- and/or di-adatom defects depending on the numbers. Si absorption defect(s) change electronic and magnetic properties of ASiNRs:H. Depending on the adsorption site the band gap of ASiNRs:H can be larger or smaller. The largest band gap of 1 Si atom adsorption is 0.64 eV at site 3, the adsorption of 2 Si atoms has the largest band gap of 0.44 eV at site 1-D, while the adsorption at sites5 and 1-E turn into metallic. The formation energies of Si adsorption show that adatom defects in ASiNRs:H are more preferable than pure ASiNRs:H with silicon atom(s). 1 Si adsorption prefers to be added on the top site of a Si atom and form a single-adatom defect, while Si di-adatom defect has lower formation energy than the single-adatom and the most energetically favorable adsorption is at site 1-F. Si adsorption atoms break spin-degeneracy of ASiNRs:H lead to di-adatom defect at site 1-G has the highest spin moment. Our results suggest new ways to engineer the band gap and magnetic properties silicene materials.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan P. Scheifers ◽  
Kate A. Gibson ◽  
Boniface P. T. Fokwa

Abstract A new ternary phase, TiIrB, was synthesized by arc-melting of the elements and characterized by powder X-ray diffraction. The compound crystallizes in the orthorhombic Ti1+x Rh2−x+y Ir3−y B3 structure type, space group Pbam (no. 55) with the lattice parameters a = 8.655(2), b = 15.020(2), and c = 3.2271(4) Å. Density Functional Theory (DFT) calculations were carried out to understand the electronic structure, including a Bader charge analysis. The charge distribution of TiIrB in the Ti1+x Rh2−x+y Ir3−y B3-type phase has been evaluated for the first time, and the results indicate that more electron density is transferred to the boron atoms in the zigzag B4 units than to isolated boron atoms.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 648 ◽  
Author(s):  
Haigang Hao ◽  
Tong Chang ◽  
Linxia Cui ◽  
Ruiqing Sun ◽  
Rui Gao

As a country that is poor in petroleum yet rich in coal, it is significant for China to develop direct coal liquefaction (DCL) technology to relieve the pressure from petroleum shortages to guarantee national energy security. To improve the efficiency of the direct coal liquefaction process, scientists and researchers have made great contributions to studying and developing highly efficient hydrogen donor (H-donor) solvents. Nevertheless, the details of hydrogen donation and the transfer pathways of H-donor solvents are still unclear. The present work examined hydrogen donation and transfer pathways using a model H-donor solvent, tetralin, by density functional theory (DFT) calculation. The reaction condition and state of the solvent (gas or liquid) were considered, and the specific elementary reaction routes for hydrogen donation and transfer were calculated. In the DCL process, the dominant hydrogen donation mechanism was the concerted mechanism. The sequence of tetralin donating hydrogen atoms was α-H (C1–H) > δ-H (C4–H) > β-H (C2–H) > γ-H (C3–H). Compared to methyl, it was relatively hard for benzyl to obtain the first hydrogen atom from tetralin, while it was relatively easy to obtain the second and third hydrogen atoms from tetralin. Comparatively, it was easier for coal radicals to capture hydrogen atoms from the H-donor solvent than to obtain hydrogen atoms from hydrogen gas.


Sign in / Sign up

Export Citation Format

Share Document