Study on Characteristic Changes of Contact Lenses According to Interpenetrating Polymer Network Time and Method Using Seaweed Polysaccharide

Polymer Korea ◽  
2021 ◽  
Vol 45 (5) ◽  
pp. 775-782
Author(s):  
Na-Young Ko ◽  
Pil Heon Lee ◽  
A-Young Sung ◽  
Hyun Mee Lee
2000 ◽  
Author(s):  
Seon Jeong Kim ◽  
Mi Seon Shin

Abstract Hydrogels have become increasingly important for use in the biomedical field. They are used diagnostic, therapeutic and implantable devices(e.g. catheter, biosensor, artificial skin, controlled release drug delivery system and contact lenses). Also silicone derivatives are widely used owing to their favorable properties such as low-glass transition temperature, high gas permeability, high thermal stability and good biocompatibility. We have studied the interpenetrating polymer networks(IPN) by previous reports, and to report on the preparation and properties of poly(vinyl alcohol), (PVA) and vinyl terminated polydimethylsiloxane(PDMS) IPN hydrogel in this presentation. The IPN composed of PVA and PDMS was synthesized by the following method. PVA was dissolved in the water to make 10wt% aqueous solution. And PDMS was mixed with 0.5wt% 2,2-dimethyl-2-phenylacetophenone(DMPAP) and 0.5mol% methylenebis acrylicamide(MBAAm). This mixture was added to PVA aqueous solution and heated at 90oC for 3hrs. Various IP{Ns were prepared from different mol ratios of PVA/PDMS. Hydrogels obtained were characterized by using FT-IR, wide angle X-ray diffractometry(WAXD), differential scanning calorimetry(DSC), dielectric analysis(DEA), and equilibrium water content(EWC).


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22544-22555
Author(s):  
Atefeh Safaei-Yaraziz ◽  
Shiva Akbari-Birgani ◽  
Nasser Nikfarjam

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pradeep Kumar ◽  
Viness Pillay ◽  
Yahya E. Choonara

AbstractThree-dimensional porous scaffolds are widely employed in tissue engineering and regenerative medicine for their ability to carry bioactives and cells; and for their platform properties to allow for bridging-the-gap within an injured tissue. This study describes the effect of various methoxypolyethylene glycol (mPEG) derivatives (mPEG (-OCH3 functionality), mPEG-aldehyde (mPEG-CHO) and mPEG-acetic acid (mPEG-COOH)) on the morphology and physical properties of chemically crosslinked, semi-interpenetrating polymer network (IPN), chitosan (CHT)/mPEG blend cryosponges. Physicochemical and molecular characterization revealed that the –CHO and –COOH functional groups in mPEG derivatives interacted with the –NH2 functionality of the chitosan chain. The distinguishing feature of the cryosponges was their unique morphological features such as fringe thread-, pebble-, curved quartz crystal-, crystal flower-; and canyon-like structures. The morphological data was well corroborated by the image processing data and physisorption curves corresponding to Type II isotherm with open hysteresis loops. Functionalization of mPEG had no evident influence on the macro-mechanical properties of the cryosponges but increased the matrix strength as determined by the rheomechanical analyses. The cryosponges were able to deliver bioactives (dexamethasone and curcumin) over 10 days, showed varied matrix degradation profiles, and supported neuronal cells on the matrix surface. In addition, in silico simulations confirmed the compatibility and molecular stability of the CHT/mPEG blend compositions. In conclusion, the study confirmed that significant morphological variations may be induced by minimal functionalization and crosslinking of biomaterials.


2021 ◽  
Vol 10 (1) ◽  
pp. 37-48
Author(s):  
Sijia Li ◽  
Chun Shao ◽  
Zhikun Miao ◽  
Panfang Lu

Abstract Waste biomass can be used as a raw material for food packaging. Different concentrations of gelatin (GEL) were introduced into the leftover rice (LR) system to form an interpenetrating polymer network (IPN) for improving the properties of the films. The structure and morphology of films were evaluated by Fourier transform infrared, scanning electron microscopy, and atomic force microscopy, which showed good compatibility between LR and GEL. The moisture content and oil absorption rate of IPN films were down by 105% and 182%, respectively, which showed better water and oil resistance than the LR film. In addition, increasing GEL concentration led to enhancement in the tensile strength of films from 2.42 to 11.40 MPa. The water contact angle value of the IPN films (117.53°) increased by 147% than the LR film (47.56°). The low haze of IPN films was obtained with the increment of the mutual entanglement of LR and GEL. The 30–50% GEL addition improved the water vapor barrier and thermal stability properties of the IPN films. This study highlights that LR as waste biomass can have a practical application in food packaging.


Sign in / Sign up

Export Citation Format

Share Document