Analysis of PM10 data using spatio-temporal correlation clustering and time series similarity

2021 ◽  
Vol 32 (6) ◽  
pp. 1259-1279
Author(s):  
Sungdon Kim ◽  
Yongjin Jeon ◽  
Haejune Oh
Author(s):  
Ze Ren Luo ◽  
Yang Zhou ◽  
Yu Xing Li ◽  
Liang Guo ◽  
Juan Juan Tuo ◽  
...  

Sedimentary microfacies division is the basis of oil and gas exploration research. The traditional sedimentary microfacies division mainly depends on human experience, which is greatly influenced by human factor and is low in efficiency. Although deep learning has its advantage in solving complex nonlinear problems, there is no effective deep learning method to solve sedimentary microfacies division so far. Therefore, this paper proposes a deep learning method based on DMC-BiLSTM for intelligent division of well-logging—sedimentary microfacies. First, the original curve is reconstructed multi-dimensionally by trend decomposition and median filtering, and spatio-temporal correlation clustering features are extracted from the reconstructed matrix by Kmeans. Then, taking reconstructed features, original curve features and clustering features as input, the prediction types of sedimentary microfacies at current depth are obtained based on BiLSTM. Experimental results show that this method can effectively classify sedimentary microfacies with its recognition efficiency reaching 96.84%.


2021 ◽  
Author(s):  
Ranier A. A. Moura ◽  
Domingos B. S. Santos ◽  
Daniel G. M. Lira ◽  
José E. B. Maia

Aplicações computacionais baseadas em dados de sensores são uma realidade, mas os dados coletados e transmitidos para as aplicações raramente chegam prontos para o uso devido a perdas e ruídos de vários tipos. Neste trabalho desenvolve-se uma abordagem baseada em correlação espaço temporal para limpeza de dados de múltiplas séries temporais de sensores quanto à ruído, dados ausentes e outliers. O método foi testato em seis conjuntos de dados reais publicamente disponíveis e o seu desempenho foi comparado com um método baseline, com um autoencoder denoising e com outro método publicado. Os resultados mostram que a abordagem proposta é competitiva e requer menos dados de treinamento do que os concorrentes.


2021 ◽  
Vol 436 ◽  
pp. 273-282
Author(s):  
Youmin Yan ◽  
Xixian Guo ◽  
Jin Tang ◽  
Chenglong Li ◽  
Xin Wang

2021 ◽  
Vol 13 (12) ◽  
pp. 2333
Author(s):  
Lilu Zhu ◽  
Xiaolu Su ◽  
Yanfeng Hu ◽  
Xianqing Tai ◽  
Kun Fu

It is extremely important to extract valuable information and achieve efficient integration of remote sensing data. The multi-source and heterogeneous nature of remote sensing data leads to the increasing complexity of these relationships, and means that the processing mode based on data ontology cannot meet requirements any more. On the other hand, the multi-dimensional features of remote sensing data bring more difficulties in data query and analysis, especially for datasets with a lot of noise. Therefore, data quality has become the bottleneck of data value discovery, and a single batch query is not enough to support the optimal combination of global data resources. In this paper, we propose a spatio-temporal local association query algorithm for remote sensing data (STLAQ). Firstly, we design a spatio-temporal data model and a bottom-up spatio-temporal correlation network. Then, we use the method of partition-based clustering and the method of spectral clustering to measure the correlation between spatio-temporal correlation networks. Finally, we construct a spatio-temporal index to provide joint query capabilities. We carry out local association query efficiency experiments to verify the feasibility of STLAQ on multi-scale datasets. The results show that the STLAQ weakens the barriers between remote sensing data, and improves their application value effectively.


Author(s):  
Carlos A. Severiano ◽  
Petrônio de Cândido de Lima e Silva ◽  
Miri Weiss Cohen ◽  
Frederico Gadelha Guimarães

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Masayuki Kano ◽  
Shin’ichi Miyazaki ◽  
Yoichi Ishikawa ◽  
Kazuro Hirahara

Abstract Postseismic Global Navigation Satellite System (GNSS) time series followed by megathrust earthquakes can be interpreted as a result of afterslip on the plate interface, especially in its early phase. Afterslip is a stress release process accumulated by adjacent coseismic slip and can be considered a recovery process for future events during earthquake cycles. Spatio-temporal evolution of afterslip often triggers subsequent earthquakes through stress perturbation. Therefore, it is important to quantitatively capture the spatio-temporal evolution of afterslip and related postseismic crustal deformation and to predict their future evolution with a physics-based simulation. We developed an adjoint data assimilation method, which directly assimilates GNSS time series into a physics-based model to optimize the frictional parameters that control the slip behavior on the fault. The developed method was validated with synthetic data. Through the optimization of frictional parameters, the spatial distributions of afterslip could roughly (but not in detail) be reproduced if the observation noise was included. The optimization of frictional parameters reproduced not only the postseismic displacements used for the assimilation, but also improved the prediction skill of the following time series. Then, we applied the developed method to the observed GNSS time series for the first 15 days following the 2003 Tokachi-oki earthquake. The frictional parameters in the afterslip regions were optimized to A–B ~ O(10 kPa), A ~ O(100 kPa), and L ~ O(10 mm). A large afterslip is inferred on the shallower side of the coseismic slip area. The optimized frictional parameters quantitatively predicted the postseismic GNSS time series for the following 15 days. These characteristics can also be detected if the simulation variables can be simultaneously optimized. The developed data assimilation method, which can be directly applied to GNSS time series following megathrust earthquakes, is an effective quantitative evaluation method for assessing risks of subsequent earthquakes and for monitoring the recovery process of megathrust earthquakes.


2021 ◽  
Vol 259 ◽  
pp. 112394
Author(s):  
Huijin Yang ◽  
Bin Pan ◽  
Ning Li ◽  
Wei Wang ◽  
Jian Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document