scholarly journals On the methodology of measuring high-speed flows using tunable diode laser absorption spectroscopy

2012 ◽  
Vol 61 (3) ◽  
pp. 034214
Author(s):  
Zhang Liang ◽  
Liu Jian-Guo ◽  
Kan Rui-Feng ◽  
Liu Wen-Qing ◽  
Zhang Yu-Jun ◽  
...  
2021 ◽  
Vol 11 (8) ◽  
pp. 3701
Author(s):  
Sunghyun So ◽  
Nakwon Jeong ◽  
Aran Song ◽  
Jungho Hwang ◽  
Daehae Kim ◽  
...  

It is important to monitor the temperature and H2O concentration in a large combustion environment in order to improve combustion (and thermal) efficiency and reduce harmful combustion emissions. However, it is difficult to simultaneously measure both internal temperature and gas concentration in a large combustion system because of the harsh environment with rapid flow. In regard, tunable diode laser absorption spectroscopy, which has the advantages of non-intrusive, high-speed response, and in situ measurement, is highly attractive for measuring the concentration of a specific gas species in the combustion environment. In this study, two partially overlapped H2O absorption signals were used in the tunable diode laser absorption spectroscopy (TDLAS) to measure the temperature and H2O concentration in a premixed CH4/air flame due to the wide selection of wavelengths with high temperature sensitivity and advantages where high frequency modulation can be applied. The wavelength regions of the two partially overlapped H2O absorptions were 1.3492 and 1.34927 μm. The measured signals separated the multi-peak Voigt fitting. As a result, the temperature measured by TDLAS based on multi-peak Voigt fitting in the premixed CH4/air flame was the highest at 1385.80 K for an equivalence ratio of 1.00. It also showed a similarity to those tendencies to the temperature measured by the corrected R-type T/C. In addition, the H2O concentrations measured by TDLAS based on the total integrated absorbance area for various equivalent ratios were consistent with those calculated by the chemical equilibrium simulation. Additionally, the H2O concentration measured at an equivalence ratio of 1.15 was the highest at 18.92%.


2021 ◽  
Vol 16 (2) ◽  
pp. 222-229
Author(s):  
Lin Feng ◽  
Jian Wang ◽  
Chao Ding

Tunable diode laser absorption spectroscopy (TDLAS) technology is adopted herein to detect fire gas produced in the early stage of the fire. Based on this technology, a fire warning detection system with multiple lasers and detectors is proposed. Multiple drivers input laser’s temperature and injected current data, making its output wavelength consistent with the measured gas’ absorption peak wavelengths in absorption spectroscopy. Multiple light beams are coupled to the same optical fiber. After the light beams pass through the long optical path absorption cell filled with fire gas, the beams are separated by a converter. The signals are demodulated by different detectors and further analyzed for fire warnings. After the fire warning system’s design, the system’s various hardware modules are designed, including the light source module, TDLAS controller, gas chamber module, photoelectric detector, and data collection. When the temperature remains unchanged, the output wavelength is linearly related to the injected current. When the injected current remains unchanged, the output wavelength is linearly related to the operating temperature. With a semiconductor laser’s injected current of 40 mA, the initial temperature of 38.6 °C, and the output wavelength of 1578.16 nm, the output wavelength increases continuously as the temperature increases. The harmonic signal amplitude after gas absorption is positively correlated with the measured gas concentration, indicating that the second harmonic signals can estimate the fire gas concentration.


2013 ◽  
Vol 38 (14) ◽  
pp. 2428 ◽  
Author(s):  
P. Adámek ◽  
J. Olejníček ◽  
M. Čada ◽  
Š. Kment ◽  
Z. Hubička

Sign in / Sign up

Export Citation Format

Share Document