The Transformation of Commutative Phase Space to Noncommutative One, and its Lorentz Transformation-Like Forms

Author(s):  
Makoto Nakamura ◽  
Hiroshi Kakuhata ◽  
Kouichi Toda

Noncommutative phase space of arbitrary dimension is discussed. We introduce momentum-momentum noncommutativity in addition to co-ordinate-coordinate noncommutativity. We find an exact form for the linear transformation which relates a noncommutative phase space to the corresponding ordinary one. By using this form, we show that a noncommutative phase space of arbitrary dimension can be represented by the direct sum of two-dimensional noncommutative ones. In two-dimension, we obtain the transformation which relates a noncommutative phase space to commutative one. The transformation has the Lorentz transformation-like forms and can also describe the Bopp's shift.

2009 ◽  
Vol 24 (25n26) ◽  
pp. 4685-4693
Author(s):  
GUANG-JIE GUO ◽  
CHAO-YUN LONG ◽  
SHUI-JIE QIN ◽  
ZHENG-REN ZHANG ◽  
HUA-XIONG CHEN

The entangled state representation has been constructed on noncommutative phase space. Using this appropriate representation, the energy spectrum of general two-dimensional harmonic oscillator has been obtained exactly.


2020 ◽  
Vol 08 (12) ◽  
pp. 2801-2823
Author(s):  
Martin Tcoffo ◽  
Germain Yinde Deuto ◽  
Issofa Nsangou ◽  
Armel Azangue Koumetio ◽  
Lylyane S. Yonya Tchapda ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. Hassanabadi ◽  
Z. Molaee ◽  
S. Zarrinkamar

We consider the Schrödinger equation under an external magnetic field in two-dimensional noncommutative phase space with an explicit minimal length relation. The eigenfunctions are reported in terms of the Jacobi polynomials, and the explicit form of energy eigenvalues is reported.


2021 ◽  
Vol 66 (9) ◽  
pp. 771
Author(s):  
I. Haouam

We study the Pauli equation in a two-dimensional noncommutative phase-space by considering a constant magnetic field perpendicular to the plane. The noncommutative problem is related to the equivalent commutative one through a set of two-dimensional Bopp-shift transformations. The energy spectrum and the wave function of the two-dimensional noncommutative Pauli equation are found, where the problem in question has been mapped to the Landau problem. In the classical limit, we have derived the noncommutative semiclassical partition function for one- and N- particle systems. The thermodynamic properties such as the Helmholtz free energy, mean energy, specific heat and entropy in noncommutative and commutative phasespaces are determined. The impact of the phase-space noncommutativity on the Pauli system is successfully examined.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Antonio J. Calderón Martín

AbstractLet {({\mathfrak{H}},\mu,\alpha)} be a regular Hom-algebra of arbitrary dimension and over an arbitrary base field {{\mathbb{F}}}. A basis {{\mathcal{B}}=\{e_{i}\}_{i\in I}} of {{\mathfrak{H}}} is called multiplicative if for any {i,j\in I}, we have that {\mu(e_{i},e_{j})\in{\mathbb{F}}e_{k}} and {\alpha(e_{i})\in{\mathbb{F}}e_{p}} for some {k,p\in I}. We show that if {{\mathfrak{H}}} admits a multiplicative basis, then it decomposes as the direct sum {{\mathfrak{H}}=\bigoplus_{r}{{\mathfrak{I}}}_{r}} of well-described ideals admitting each one a multiplicative basis. Also, the minimality of {{\mathfrak{H}}} is characterized in terms of the multiplicative basis and it is shown that, in case {{\mathcal{B}}}, in addition, it is a basis of division, then the above direct sum is composed by means of the family of its minimal ideals, each one admitting a multiplicative basis of division.


Sign in / Sign up

Export Citation Format

Share Document