scholarly journals Myopalladin knockout mice develop cardiac dilation and show a maladaptive response to mechanical pressure overload

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maria Carmela Filomena ◽  
Daniel L Yamamoto ◽  
Pierluigi Carullo ◽  
Roman Medvedev ◽  
Andrea Ghisleni ◽  
...  

Myopalladin (MYPN) is a striated muscle-specific immunoglobulin domain-containing protein located in the sarcomeric Z-line and I-band. MYPN gene mutations are causative for dilated (DCM), hypertrophic and restrictive cardiomyopathy. In a yeast two-hybrid screening, MYPN was found to bind to titin in the Z-line, which was confirmed by microscale thermophoresis. Cardiac analyses of MYPN knockout (MKO) mice showed the development of mild cardiac dilation and systolic dysfunction, associated with decreased myofibrillar isometric tension generation and increased resting tension at longer sarcomere lengths. MKO mice exhibited a normal hypertrophic response to transaortic constriction (TAC), but rapidly developed severe cardiac dilation and systolic dysfunction, associated with fibrosis, increased fetal gene expression, higher intercalated disc fold amplitude, decreased calsequestrin-2 protein levels, and increased desmoplakin and SORBS2 protein levels. Cardiomyocyte analyses showed delayed Ca2+ release and reuptake in unstressed MKO mice as well as reduced Ca2+ spark amplitude post-TAC, suggesting that altered Ca2+ handling may contribute to the development of DCM in MKO mice.

2000 ◽  
Vol 279 (6) ◽  
pp. H2916-H2926 ◽  
Author(s):  
Can G. Pham ◽  
Alice E. Harpf ◽  
Rebecca S. Keller ◽  
Hoa T. Vu ◽  
Shaw-Yung Shai ◽  
...  

Alterations in the extracellular matrix occur during the cardiac hypertrophic process. Because integrins mediate cell-matrix adhesion and β1D-integrin (β1D) is expressed exclusively in cardiac and skeletal muscle, we hypothesized that β1D and focal adhesion kinase (FAK), a proximal integrin-signaling molecule, are involved in cardiac growth. With the use of cultured ventricular myocytes and myocardial tissue, we found the following: 1) β1D protein expression was upregulated perinatally; 2) α1-adrenergic stimulation of cardiac myocytes increased β1D protein levels 350% and altered its cellular distribution; 3) adenovirally mediated overexpression of β1D stimulated cellular reorganization, increased cell size by 250%, and induced molecular markers of the hypertrophic response; and 4) overexpression of free β1D cytoplasmic domains inhibited α1-adrenergic cellular organization and atrial natriuretic factor (ANF) expression. Additionally, FAK was linked to the hypertrophic response as follows: 1) coimmunoprecipitation of β1D and FAK was detected; 2) FAK overexpression induced ANF-luciferase; 3) rapid and sustained phosphorylation of FAK was induced by α1-adrenergic stimulation; and 4) blunting of the α1-adrenergically modulated hypertrophic response was caused by FAK mutants, which alter Grb2 or Src binding, as well as by FAK-related nonkinase, a dominant interfering FAK mutant. We conclude that β1D and FAK are both components of the hypertrophic response pathway of cardiac myocytes.


2017 ◽  
Vol 9 (1) ◽  
pp. 112-124
Author(s):  
K. Heinecke ◽  
A. Heuser ◽  
F. Blaschke ◽  
C. Jux ◽  
L. Thierfelder ◽  
...  

Intrauterine growth restriction in animal models reduces heart size and cardiomyocyte number at birth. Such incomplete cardiomyocyte endowment is believed to increase susceptibility toward cardiovascular disease in adulthood, a phenomenon referred to as developmental programming. We have previously described a mouse model of impaired myocardial development leading to a 25% reduction of cardiomyocyte number in neonates. This study investigated the response of these hypoplastic hearts to pressure overload in adulthood, applied by abdominal aortic constriction (AAC). Echocardiography revealed a similar hypertrophic response in hypoplastic hearts compared with controls over the first 2 weeks. Subsequently, control mice develop mild left ventricular (LV) dilation, wall thinning and contractile dysfunction 4 weeks after AAC, whereas hypoplastic hearts fully maintain LV dimensions, wall thickness and contractility. At the cellular level, controls exhibit increased cardiomyocyte cross-sectional area after 4 weeks pressure overload compared with sham operated animals, but this hypertrophic response is markedly attenuated in hypoplastic hearts. AAC mediated induction of fibrosis, apoptosis or cell cycle activity was not different between groups. Expression of fetal genes, indicative of pathological conditions, was similar in hypoplastic and control hearts after AAC. Among various signaling pathways involved in cardiac hypertrophy, pressure overload induces p38 MAP-kinase activity in hypoplastic hearts but not controls compared with the respective sham operated animals. In summary, based on the mouse model used in this study, our data indicates that adult hearts after neonatal cardiac hypoplasia show an altered growth response to pressure overload, eventually resulting in better functional outcome compared with controls.


1994 ◽  
Vol 266 (1) ◽  
pp. H68-H78 ◽  
Author(s):  
C. R. Cory ◽  
R. W. Grange ◽  
M. E. Houston

The loss of load-sensitive relaxation observed in the pressure-overloaded heart may reflect a strategy of slowed cytosolic Ca2+ uptake to yield a prolongation of the active state of the muscle and a decrease in cellular energy expenditure. A decrease in the potential of the sarcoplasmic reticulum (SR) to resequester cytosolic Ca2+ during diastole could contribute to this attenuated load sensitivity. To test this hypothesis, both in vitro mechanical function of anterior papillary muscles and the SR Ca2+ sequestration potential of female guinea pig left ventricle were compared in cardiac hypertrophy (Hyp) and sham-operated (Sham) groups. Twenty-one days of pressure overload induced by coarctation of the suprarenal, subdiaphragmatic aorta resulted in a 36% increase in left ventricular mass in the Hyp. Peak isometric tension, the rate of isometric tension development, and the maximal rates of isometric and isotonic relaxation were significantly reduced in Hyp. Load-sensitive relaxation were significantly reduced in Hyp. Load-sensitive relaxation quantified by the ratio of a rapid loading to unloading force step in isotonically contracting papillary muscle was reduced 50% in Hyp muscles. Maximum activity of SR Ca(2+)-adenosinetriphosphatase (ATPase) measured under optimal conditions (37 degrees C; saturating Ca2+) was unaltered, but at low free Ca2+ concentrations (0.65 microM), it was decreased by 43% of the Sham response. Bivariate regression analysis revealed a significant (r = 0.84; P = 0.009) relationship between the decrease in SR Ca(2+)-ATPase activity and the loss of load-sensitive relaxation after aortic coarctation. Stimulation of the SR Ca(2+)-ATPase by the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase resulted in a 2.6-fold increase for Sham but only a 1.6-fold increase for Hyp. Semiquantitative Western blot radioimmunoassays revealed that the changes in SR Ca(2+)-ATPase activity were not due to decreases in the content of the Ca(2+)-ATPase protein or phospholamban. Our data directly implicate a role for decreased SR function in attenuated load sensitivity. A purposeful downregulation of SR Ca2+ uptake likely results from a qualitative rather than a quantitative change in the ATPase and possibly one of its key regulators, phospholamban.


2010 ◽  
Vol 120 (5) ◽  
pp. 1506-1514 ◽  
Author(s):  
Ippei Shimizu ◽  
Tohru Minamino ◽  
Haruhiro Toko ◽  
Sho Okada ◽  
Hiroyuki Ikeda ◽  
...  

2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Masataka Kawai ◽  
Robert Stehle ◽  
Gabriele Pfitzer ◽  
Bogdan Iorga

In this study, we aimed to study the role of inorganic phosphate (Pi) in the production of oscillatory work and cross-bridge (CB) kinetics of striated muscle. We applied small-amplitude sinusoidal length oscillations to rabbit psoas single myofibrils and muscle fibers, and the resulting force responses were analyzed during maximal Ca2+ activation (pCa 4.65) at 15°C. Three exponential processes, A, B, and C, were identified from the tension transients, which were studied as functions of Pi concentration ([Pi]). In myofibrils, we found that process C, corresponding to phase 2 of step analysis during isometric contraction, is almost a perfect single exponential function compared with skinned fibers, which exhibit distributed rate constants, as described previously. The [Pi] dependence of the apparent rate constants 2πb and 2πc, and that of isometric tension, was studied to characterize the force generation and Pi release steps in the CB cycle, as well as the inhibitory effect of Pi. In contrast to skinned fibers, Pi does not accumulate in the core of myofibrils, allowing sinusoidal analysis to be performed nearly at [Pi] = 0. Process B disappeared as [Pi] approached 0 mM in myofibrils, indicating the significance of the role of Pi rebinding to CBs in the production of oscillatory work (process B). Our results also suggest that Pi competitively inhibits ATP binding to CBs, with an inhibitory dissociation constant of ∼2.6 mM. Finally, we found that the sinusoidal waveform of tension is mostly distorted by second harmonics and that this distortion is closely correlated with production of oscillatory work, indicating that the mechanism of generating force is intrinsically nonlinear. A nonlinear force generation mechanism suggests that the length-dependent intrinsic rate constant is asymmetric upon stretch and release and that there may be a ratchet mechanism involved in the CB cycle.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ling-Yan Yuan ◽  
Pei-Zhao Du ◽  
Min-Min Wei ◽  
Qi Zhang ◽  
Le Lu ◽  
...  

Background. Aerobic exercise has been proven to have a positive effect on cardiac function after hypertension; however, the mechanism is not entirely clarified. Skeletal muscle mass and microcirculation are closely associated with blood pressure and cardiac function. Objective. This study was designed to investigate the effects of aerobic exercise on the skeletal muscle capillary and muscle mass, to explore the possible mechanisms involved in exercise-induced mitigation of cardiac dysfunction in pressure overload mice. Methods. In this study, 60 BALB/C mice aged 8 weeks were randomly divided into 3 groups: control (CON), TAC, and TAC plus exercise (TAE) group and utilized transverse aortic constriction (TAC) to establish hypertensive model; meanwhile, treadmill training is used for aerobic exercise. After 5 days of recovery, mice in the TAE group were subjected to 10-week aerobic exercise. Carotid pressure and cardiac function were examined before mice were executed by Millar catheter and ultrasound, respectively. Muscle mass of gastrocnemius was weighed; cross-sectional area and the number of capillaries of gastrocnemius were detected by HE and immunohistochemistry, respectively. The mRNA and protein levels of VEGF in skeletal muscle were determined by RT-PCR and western blot, respectively. Results. We found that ① 10-week aerobic exercise counteracted hypertension and attenuated cardiac dysfunction in TAC-induced hypertensive mice; ② TAC decreased muscle mass of gastrocnemius and resulted in muscle atrophy, while 10-week aerobic exercise could reserve transverse aortic constriction-induced the decline of muscle mass and muscle atrophy; and ③ TAC reduced the number of capillaries and the protein level of VEGF in gastrocnemius, whereas 10-week aerobic exercise augmented the number of capillaries, the mRNA and protein levels of VEGF in mice were subjected to TAC surgery. Conclusions. This study indicates that 10-week aerobic exercise might fulfill its blood pressure-lowering effect via improving skeletal muscle microcirculation and increasing muscle mass.


2022 ◽  
Author(s):  
Ya-Jing Zhang ◽  
Sen-Yu Wang ◽  
Song-Tao Han ◽  
Yao-Yao Huang ◽  
Yang-Chun Feng

Abstract Background: Lung cancer has the highest mortality rate of all cancers, and LUAD's survival rate is particularly poor. Erythropoietin receptor (EPOR) is a member of the cytokine class I receptor family and can be detected in cancers such as lung adenocarcinoma (LUAD), however, the expression levels and prognostic value of EPOR in LUAD are still unclear.Methods: Multiple bioinformatics databases such as TIMER, Kaplan-Meier Plotter and TCGA databases, immunohistochemical method, and clinicopathological data of 92 LUADpatients between January 2008 and June 2016 were used to explore the EPOR expression, gene mutations affecting EPOR expression, EPOR-interacting or coexpressed genes, potential biological functions and the correlation of EPOR expression with prognosis, immune microenvironment and so on.All statistical analyses were performed in the R version 4.1.1.Results: In this study, the EPOR mRNA expression in LUAD tissues was possibly downregulated compared with that in normal lung tissues, but the EPOR protein expression in LUAD tissues was higher than that in paired normal lung tissues. Mutations in five genes, DDX60L, LGR6, POTEB3, RIF1 and SOX5, resulted in downregulation of EPOR expression, mutations in 10 genes includingC1orf168, DBX2 and EIF5B, resulted in upregulation of EPOR expression. Erichment analyses showed that EPOR is involved in neural tissue ligand-receptor interactions, MAPK and PI3K/Akt signaling pathways and cancer pathways. The KM Plotter and PrognoScan databases consistently concluded that EPOR was associated with prognosis in LUAD patients. Our clinicopathological data showed that high EPOR expression was associated with poorer OS (29.5 vs 46 months) and had a good predictive ability for 5-year survival probability. Conclusions: EPOR expression might be downregulated at the mRNA levels and significantly upregulated at the protein levels in LUAD, which showed that the mRNA and protein levels of EPOR are inconsistent.The high expression of EPOR was associated with poor prognosis and is expected to be a potential new prognostic marker for LUAD.


2018 ◽  
Vol 115 (3) ◽  
pp. 519-529 ◽  
Author(s):  
Sarah-Lena Puhl ◽  
Kate L Weeks ◽  
Alican Güran ◽  
Antonella Ranieri ◽  
Peter Boknik ◽  
...  

Abstract Aims B56α is a protein phosphatase 2A (PP2A) regulatory subunit that is highly expressed in the heart. We previously reported that cardiomyocyte B56α localizes to myofilaments under resting conditions and translocates to the cytosol in response to acute β-adrenergic receptor (β-AR) stimulation. Given the importance of reversible protein phosphorylation in modulating cardiac function during sympathetic stimulation, we hypothesized that loss of B56α in mice with targeted disruption of the gene encoding B56α (Ppp2r5a) would impact on cardiac responses to β-AR stimulation in vivo. Methods and results Cardiac phenotype of mice heterozygous (HET) or homozygous (HOM) for the disrupted Ppp2r5a allele and wild type (WT) littermates was characterized under basal conditions and following acute β-AR stimulation with dobutamine (DOB; 0.75 mg/kg i.p.) or sustained β-AR stimulation by 2-week infusion of isoproterenol (ISO; 30 mg/kg/day s.c.). Left ventricular (LV) wall thicknesses, chamber dimensions and function were assessed by echocardiography, and heart tissue collected for gravimetric, histological, and biochemical analyses. Western blot analysis revealed partial and complete loss of B56α protein in hearts from HET and HOM mice, respectively, and no changes in the expression of other PP2A regulatory, catalytic or scaffolding subunits. PP2A catalytic activity was reduced in hearts of both HET and HOM mice. There were no differences in the basal cardiac phenotype between genotypes. Acute DOB stimulation induced the expected inotropic response in WT and HET mice, which was attenuated in HOM mice. In contrast, DOB-induced increases in heart rate were unaffected by B56α deficiency. In WT mice, ISO infusion increased LV wall thicknesses, cardiomyocyte area and ventricular mass, without LV dilation, systolic dysfunction, collagen deposition or foetal gene expression. The hypertrophic response to ISO was blunted in mice deficient for B56α. Conclusion These findings identify B56α as a potential regulator of cardiac structure and function during β-AR stimulation.


Sign in / Sign up

Export Citation Format

Share Document