scholarly journals Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Celia Biane ◽  
Florian Rückerl ◽  
Therese Abrahamsson ◽  
Cécile Saint-Cloment ◽  
Jean Mariani ◽  
...  

Synaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling. We found that postnatal maturation of postsynaptic strength was homogeneously reduced along the somatodendritic axis, but dendritic integration was always sublinear. However, dendritic branching increased without changes in synapse density, leading to a substantial gain in distal inputs. Thus, changes in synapse distribution, rather than dendrite cable properties, are the dominant mechanism underlying the maturation of neuronal computation. These mechanisms favor the emergence of a spatially compartmentalized two-stage integration model promoting location-dependent integration within dendritic subunits.

2001 ◽  
Vol 16 (7) ◽  
pp. 2057-2063 ◽  
Author(s):  
Jiin-Jyh Shyu ◽  
Hsin-Wei Peng

The crystallization and dielectric properties of SrO–BaO–Nb2O5–GeO2 glass–ceramics were investigated. One- and two-stage heat-treatment methods were used to convert the parent glass to glass–ceramics. Strontium barium niobate (SBN) with a tetragonal tungsten-bronze structure formed as the major crystalline phase. When the crystallizing temperature/time was increased, the secondary crystalline BaGe2O5 phase coexisted with SBN. BaGe2O5 formed as a surface layer grown from the surface into the interior of the sample. The dendritic morphology of SBN crystals was examined. The glass–ceramics crystallized by two-stage heat treatment have higher dielectric constants than those crystallized by one-stage heat treatment. The highest dielectric constant that was obtained in the present glass–ceramics was 320. The glass–ceramics showed relaxor-type dielectric behavior.


2018 ◽  
Author(s):  
Richard Dewell ◽  
Fabrizio Gabbiani

Brains processes information through the coordinated efforts of billions of individual neurons, each encoding a small part of the overall information stream. Central to this is how neurons integrate and transform complex patterns of synaptic inputs. The neuronal membrane impedance sets the gain and timing for synaptic integration, determining a neuron's ability to discriminate between synaptic input patterns. Using single and dual dendritic recordings in vivo, pharmacology, and computational modeling, we characterized the membrane impedance of a collision detection neuron in the grasshopper, Schistocerca americana. We examined how the cellular properties of the lobula giant movement detector (LGMD) neuron are tuned to enable the discrimination of synaptic input patterns key to its role in collision detection. We found that two common active conductances gH and gM, mediated respectively by hyperpolarization-activated cyclic nucleotide gated (HCN) channels and by muscarine sensitive M-type K+ channels, promote broadband integration with high temporal precision over the LGMD's natural range of membrane potentials and synaptic input frequencies. Additionally, we found that the LGMD's branching morphology increased the gain and decreased delays associated with the mapping of synaptic input currents to membrane potential. We investigated whether other branching dendritic morphologies fulfill a similar function and found this to be true for a wide range of morphologies, including those of neocortical pyramidal neurons and cerebellar Purkinje cells. These findings further our understanding of the integration properties of individual neurons by showing the unexpected role played by two widespread active conductances and by dendritic morphology in shaping synaptic integration.


2014 ◽  
Vol 112 (2) ◽  
pp. 233-248 ◽  
Author(s):  
Justin Elstrott ◽  
Kelly B. Clancy ◽  
Haani Jafri ◽  
Igor Akimenko ◽  
Daniel E. Feldman

Whisker deflection evokes sparse, low-probability spiking among L2/3 pyramidal cells in rodent somatosensory cortex (S1), with spiking distributed nonuniformly between more and less responsive cells. The cellular and local circuit factors that determine whisker responsiveness across neurons are unclear. To identify these factors, we used two-photon calcium imaging and loose-seal recording to identify more and less responsive L2/3 neurons in S1 slices in vitro, during feedforward recruitment of the L2/3 network by L4 stimulation. We observed a broad gradient of spike recruitment thresholds within local L2/3 populations, with low- and high-threshold cells intermixed. This recruitment gradient was significantly correlated across different L4 stimulation sites, and between L4-evoked and whisker-evoked responses in vivo, indicating that a substantial component of responsiveness is independent of tuning to specific feedforward inputs. Low- and high-threshold L2/3 pyramidal cells differed in L4-evoked excitatory synaptic conductance and intrinsic excitability, including spike threshold and the likelihood of doublet spike bursts. A gradient of intrinsic excitability was observed across neurons. Cells that spiked most readily to L4 stimulation received the most synaptic excitation but had the lowest intrinsic excitability. Low- and high-threshold cells did not differ in dendritic morphology, passive membrane properties, or L4-evoked inhibitory conductance. Thus multiple gradients of physiological properties exist across L2/3 pyramidal cells, with excitatory synaptic input strength best predicting overall spiking responsiveness during network recruitment.


2018 ◽  
Vol 2 ◽  
pp. 239821281877656 ◽  
Author(s):  
Luca A. Annecchino ◽  
Simon R. Schultz

Patch clamp electrophysiology has transformed research in the life sciences over the last few decades. Since their inception, automatic patch clamp platforms have evolved considerably, demonstrating the capability to address both voltage- and ligand-gated channels, and showing the potential to play a pivotal role in drug discovery and biomedical research. Unfortunately, the cell suspension assays to which early systems were limited cannot recreate biologically relevant cellular environments, or capture higher order aspects of synaptic physiology and network dynamics. In vivo patch clamp electrophysiology has the potential to yield more biologically complex information and be especially useful in reverse engineering the molecular and cellular mechanisms of single-cell and network neuronal computation, while capturing important aspects of human disease mechanisms and possible therapeutic strategies. Unfortunately, it is a difficult procedure with a steep learning curve, which has restricted dissemination of the technique. Luckily, in vivo patch clamp electrophysiology seems particularly amenable to robotic automation. In this review, we document the development of automated patch clamp technology, from early systems based on multi-well plates through to automated planar-array platforms, and modern robotic platforms capable of performing two-photon targeted whole-cell electrophysiological recordings in vivo.


2020 ◽  
Vol 11 ◽  
Author(s):  
Azzah M. Alghamdi ◽  
Craig P. Testrow ◽  
Dominic G. Whittaker ◽  
Mark R. Boyett ◽  
Jules. C. Hancox ◽  
...  

Marked age- and development- related differences have been observed in morphology and characteristics of action potentials (AP) of neonatal and adult sinoatrial node (SAN) cells. These may be attributable to a different set of ion channel interactions between the different ages. However, the underlying mechanism(s) have yet to be elucidated. The objective of this study was to determine the mechanisms underlying different spontaneous APs and heart rate between neonatal and adult SAN cells of the rabbit heart by biophysical modeling approaches. A mathematical model of neonatal rabbit SAN cells was developed by modifying the current densities and/or kinetics of ion channels and transporters in an adult cell model based on available experimental data obtained from neonatal SAN cells. The single cell models were then incorporated into a multi-cellular, two-dimensional model of the intact SAN-atrium to investigate the functional impact of altered ion channels during maturation on pacemaking electrical activities and their conduction at the tissue level. Effects of the neurotransmitter acetylcholine on the pacemaking activities in neonatal cells were also investigated and compared to those in the adult. Our results showed: (1) the differences in ion channel properties between neonatal and adult SAN cells are able to account for differences in their APs and the heart rate, providing mechanistic insight into understanding the reduced pacemaking rate of the rabbit sinoatrial node during postnatal development; (2) in the 2D model of the intact SAN-atria, it was shown that cellular changes during postnatal development impaired pacemaking activity through increasing the activation time and reducing the conduction velocity across the SAN; (3) the neonatal SAN model, with its faster beating rates, showed a greater sensitivity to parasympathetic modulation in response to acetylcholine than did the adult model. These results provide novel insights into the understanding of the cellular mechanisms underlying the differences in the cardiac pacemaking activities of the neonatal and adult SAN.


2020 ◽  
Author(s):  
R. Chittajallu ◽  
K. Auville ◽  
V. Mahadevan ◽  
M. Lai ◽  
S. Hunt ◽  
...  

ABSTRACTThe ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance to human circuit function. In this study, we focus on neurogliaform cells, a specialized form of neuron that possess physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms relevant for human cognitive processing and behavior.


2020 ◽  
Author(s):  
Colin G. McNamara ◽  
Max Rothwell ◽  
Andrew Sharott

AbstractNormal brain function is associated with an assortment of oscillations of various frequencies, each reflecting the timing of separate computational processes and levels of synchronization within and between brain areas. Stimulation accurately delivered on a specified phase of a given oscillation provides the opportunity to target individual aspects of brain function. To achieve this, we have developed a highly responsive system to produce a continuous online phase-estimate. In addition to stable oscillations, the system accurately tracks the early cycles of short, transient oscillations and can operate across the frequency range of most established neuronal oscillations (4 to 250 Hz). Here we demonstrate bidirectional modulation of the pathologically elevated parkinsonian beta-band oscillation (around 35 Hz) in 6-OHDA hemi-lesioned rats. Beta phase, monitored using a single channel electrocorticogram above secondary motor cortex, was used to drive electrical stimulation of the globus pallidus on one of eight phases spanning the oscillation cycle. Stimulation of the early ascending phase suppressed the oscillation whereas stimulation of the early descending phase was amplifying. By implementing a rule that prevented stimulation when the phase estimate was unstable, we achieved a system that could adapt stimulation rate and pattern to respond to the changes produced in the target oscillation. This allowed the electronic system to create and maintain a state of equilibrium with the biological system resulting in continuous stable modulation of the target oscillation over time. These results demonstrate the feasibility of phase locked stimulation as a more refined strategy for remediation of pathological beta oscillations in the treatment of the motor symptoms of Parkinson’s disease. Furthermore, they establish the utility of our algorithm and allow for the potential to assess the contribution of rhythmic activity in neuronal computation across a number of brain systems.


Author(s):  
J.H. Uhm ◽  
N.P. Dooley ◽  
J.-G. Villemure ◽  
V.W. Yong

ABSTRACT:One of the most lethal properties of high grade gliomas is their ability to invade the surrounding normal brain tissue, as infiltrated cells often escape surgical resection and inevitably lead to tumour recurrence. The consequent poor prognosis and survival rate underscore the need to further understand and target the cellular mechanisms that underly tumour invasiveness. Proteases which degrade the surrounding stromal cells and extracellular matrix proteins have been demonstrated to be critical effectors of invasion for tumours of both central and peripheral origin. Within the nervous system, the role of metalloproteinases as well as other classes of proteases in mediating the invasive phenotype of high grade gliomas has been an intense area of research. We present in this article a review of this literature and address the possibility that these proteases and the biochemical pathways that regulate their expression, such as protein kinase C, may represent potential targets in the therapy of high grade gliomas.


Sign in / Sign up

Export Citation Format

Share Document