scholarly journals AAV-Txnip prolongs cone survival and vision in mouse models of retinitis pigmentosa

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yunlu Xue ◽  
Sean K Wang ◽  
Parimal Rana ◽  
Emma R West ◽  
Christin M Hong ◽  
...  

Retinitis pigmentosa (RP) is an inherited retinal disease, affecting >20 million people worldwide. Loss of daylight vision typically occurs due to the dysfunction/loss of cone photoreceptors, the cell type that initiates our color and high acuity vision. Currently, there is no effective treatment for RP, other than gene therapy for a limited number of specific disease genes. To develop a disease gene-agnostic therapy, we screened 20 genes for their ability to prolong cone photoreceptor survival in vivo. Here, we report an adeno-associated virus (AAV) vector expressing Txnip, which prolongs the survival of cone photoreceptors and improves visual acuity in RP mouse models. A Txnip allele, C247S, which blocks the association of Txnip with thioredoxin, provides an even greater benefit. Additionally, the rescue effect of Txnip depends on lactate dehydrogenase b (Ldhb), and correlates with the presence of healthier mitochondria, suggesting that Txnip saves RP cones by enhancing their lactate catabolism.

2021 ◽  
Author(s):  
Yunlu Xue ◽  
Sean K. Wang ◽  
Parimal Rana ◽  
Emma R. West ◽  
Christin M. Hong ◽  
...  

AbstractRetinitis pigmentosa (RP) is an inherited retinal disease, affecting >20 million people worldwide. Loss of daylight vision typically occurs due to the dysfunction/loss of cone photoreceptors, the cell type that initiates our color and high acuity vision. Currently, there is no effective treatment for RP, other than gene therapy for a limited number of specific disease genes. To develop a gene-agnostic therapy, we screened ≈20 genes for their ability to prolong cone photoreceptor survival in vivo. Here, we report an adeno-associated virus (AAV) vector expressing Txnip, which prolongs the survival of cone photoreceptors and improves visual acuity in RP mouse models. A Txnip allele, C247S, which blocks the association of Txnip with thioredoxin, provides an even greater benefit. Additionally, the rescue effect of Txnip depends on lactate dehydrogenase b (Ldhb), and correlates with the presence of healthier mitochondria, suggesting that Txnip saves RP cones by enhancing their lactate catabolism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ine Strubbe ◽  
Caroline Van Cauwenbergh ◽  
Julie De Zaeytijd ◽  
Sarah De Jaegere ◽  
Marieke De Bruyne ◽  
...  

AbstractWe describe both phenotype and pathogenesis in two male siblings with typical retinitis pigmentosa (RP) and the potentially X-linked RP (XLRP) carrier phenotype in their mother. Two affected sons, two unaffected daughters, and their mother underwent detailed ophthalmological assessments including Goldmann perimetry, color vision testing, multimodal imaging and ISCEV-standard electroretinography. Genetic testing consisted of targeted next-generation sequencing (NGS) of known XLRP genes and whole exome sequencing (WES) of known inherited retinal disease genes (RetNet-WES). Variant validation and segregation analysis were performed by Sanger sequencing. The mutational load of the RHO variant in the mother was assessed in DNA from leucocytes, buccal cells and hair follicles using targeted NGS. Both affected sons showed signs of classical RP, while the mother displayed patches of hyperautofluorescence on blue light autofluorescence imaging and regional, intraretinal, spicular pigmentation, reminiscent of a carrier phenotype of XLRP. XLRP testing was negative. RetNet-WES testing revealed RHO variant c.404G > C p.(Arg135Pro) in a mosaic state (21% of the reads) in the mother and in a heterozygous state in both sons. Targeted NGQSS of the RHO variant in different maternal tissues showed a mutation load between 25.06% and 41.72%. We report for the first time that somatic mosaicism of RHO variant c.404G > C p.(Arg135Pro) mimics the phenotype of a female carrier of XLRP, in combination with heterozygosity for the variant in the two affected sons.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Harry O. Orlans ◽  
Michelle E. McClements ◽  
Alun R. Barnard ◽  
Cristina Martinez-Fernandez de la Camara ◽  
Robert E. MacLaren

AbstractRhodopsin (RHO) gene mutations are a common cause of autosomal dominant retinitis pigmentosa (ADRP). The need to suppress toxic protein expression together with mutational heterogeneity pose challenges for treatment development. Mirtrons are atypical RNA interference effectors that are spliced from transcripts as short introns. Here, we develop a novel mirtron-based knockdown/replacement gene therapy for the mutation-independent treatment of RHO-related ADRP, and demonstrate efficacy in a relevant mammalian model. Splicing and potency of rhodopsin-targeting candidate mirtrons are initially determined, and a mirtron-resistant codon-modified version of the rhodopsin coding sequence is validated in vitro. These elements are then combined within a single adeno-associated virus (AAV) and delivered subretinally in a RhoP23H knock-in mouse model of ADRP. This results in significant mouse-to-human rhodopsin RNA replacement and is associated with a slowing of retinal degeneration. This provides proof of principle that synthetic mirtrons delivered by AAV are capable of reducing disease severity in vivo.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Chiara M Eandi ◽  
Hugo Charles Messance ◽  
Sébastien Augustin ◽  
Elisa Dominguez ◽  
Sophie Lavalette ◽  
...  

Photo-transduction in cone segments (CS) is crucial for high acuity daytime vision. For ill-defined reasons, CS degenerate in retinitis pigmentosa (RP) and in the transitional zone (TZ) of atrophic zones (AZ), which characterize geographic atrophy (GA). Our experiments confirm the loss of cone segments (CS) in the TZ of patients with GA and show their association with subretinal CD14+mononuclear phagocyte (MP) infiltration that is also reported in RP. Using human and mouse MPs in vitro and inflammation-prone Cx3cr1GFP/GFP mice in vivo, we demonstrate that MP-derived IL-1β leads to severe CS degeneration. Our results strongly suggest that subretinal MP accumulation participates in the observed pathological photoreceptor changes in these diseases. Inhibiting subretinal MP accumulation or Il-1β might protect the CS and help preserve high acuity daytime vision in conditions characterized by subretinal inflammation, such as AMD and RP.


2000 ◽  
Vol 276 (15) ◽  
pp. 12091-12099 ◽  
Author(s):  
Dong-Hyun Hong ◽  
Guohua Yue ◽  
Michael Adamian ◽  
Tiansen Li

Retinitis pigmentosa (RP) is a blinding retinal disease in which the photoreceptor cells degenerate. Mutations in the gene for retinitis pigmentosa GTPase regulator (RPGR) are a frequent cause of RP. The function of RPGR is not well understood, but it is thought to be a putative guanine nucleotide exchange factor for an unknown G protein. Ablation of theRPGRgene in mice suggested a role in maintaining the polarized distribution of opsin across the cilia. To investigate its function, we used a protein interaction screen to identify candidate proteins that may interact physiologically with RPGR. One such protein, designated RPGR-interacting protein (RPGRIP), is expressed specifically in rod and cone photoreceptors. It consists of an N-terminal region predicted to form coiled coil structures linked to a C-terminal tail that binds RPGR.In vivo, both proteins co-localize in the photoreceptor connecting cilia. RPGRIP is stably associated with the ciliary axoneme independent of RPGR and is resistant to extraction under conditions that partially solubilized other cytoskeletal components. When over-expressed in heterologous cell lines, RPGRIP appears in insoluble punctate and filamentous structures. These data suggest that RPGRIP is a structural component of the ciliary axoneme, and one of its functions is to anchor RPGR within the cilium. RPGRIP is the only protein known to localize specifically in the photoreceptor connecting cilium. As such, it is a candidate gene for human photoreceptor disease. The tissue-specific expression of RPGRIP explains why mutations in the ubiquitously expressed RPGR confer a photoreceptor-specific phenotype.


2017 ◽  
Vol 20 (2) ◽  
pp. 202-213 ◽  
Author(s):  
Kristof Van Schil ◽  
◽  
Sarah Naessens ◽  
Stijn Van de Sompele ◽  
Marjolein Carron ◽  
...  

2018 ◽  
Vol 21 (8) ◽  
pp. 1998-1998
Author(s):  
Kristof Van Schil ◽  
◽  
Sarah Naessens ◽  
Stijn Van de Sompele ◽  
Marjolein Carron ◽  
...  

Author(s):  
Kornelia Neveling ◽  
Anneke I. den Hollander ◽  
Frans P. M. Cremers ◽  
Rob W. J. Collin

2019 ◽  
Vol 116 (20) ◽  
pp. 10140-10149 ◽  
Author(s):  
Sean K. Wang ◽  
Yunlu Xue ◽  
Parimal Rana ◽  
Christin M. Hong ◽  
Constance L. Cepko

Retinitis pigmentosa (RP) is a disease that initially presents as night blindness due to genetic deficits in the rod photoreceptors of the retina. Rods then die, causing dysfunction and death of cone photoreceptors, the cell type that mediates high acuity and color vision, ultimately leading to blindness. We investigated immune responses in mouse models of RP and found evidence of microglia activation throughout the period of cone degeneration. Using adeno-associated vectors (AAVs), delivery of genes encoding microglial regulatory signals led to the identification of AAV serotype 8 (AAV8) soluble CX3CL1 (sCX3CL1) as a promising therapy for degenerating cones. Subretinal injection of AAV8-sCX3CL1 significantly prolonged cone survival in three strains of RP mice. Rescue of cones was accompanied by improvements in visual function. AAV8-sCX3CL1 did not affect rod survival, microglia localization, or inflammatory cytokine levels in the retina. Furthermore, although RNA sequencing of microglia demonstrated marked transcriptional changes with AAV8-sCX3CL1, pharmacological depletion of up to ∼99% of microglia failed to abrogate the effect of AAV8-sCX3CL1 on cone survival. These findings indicate that AAV8-sCX3CL1 can rescue cones in multiple mouse models of RP via a pathway that does not require normal numbers of microglia. Gene therapy with sCX3CL1 is a promising mutation-independent approach to preserve vision in RP and potentially other forms of retinal degeneration.


Sign in / Sign up

Export Citation Format

Share Document