scholarly journals Regeneration of the larval sea star nervous system by wounding induced respecification to the sox2 lineage

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Minyan Zheng ◽  
Olga Zueva ◽  
Veronica Hinman

The ability to restore lost body parts following traumatic injury is a fascinating area of biology that challenges current understanding of the ontogeny of differentiation. The origin of new cells needed to regenerate lost tissue, and whether they are pluripotent stem cells, tissue-specific stem cells or have de- or trans- differentiated, remains one of the most important open questions in regeneration. Additionally, it is not clearly known whether developmental gene regulatory networks (GRNs) are reused to direct specification in these cells or whether regeneration specific networks are deployed. Echinoderms, including sea stars, have extensive ability for regeneration and have therefore been the subject of many thorough studies on the ultrastructural and molecular properties of cells needed for regeneration. However, the technologies for obtaining transgenic echinoderms are limited and tracking cells involved in regeneration, and thus identifying the cellular sources and potencies has proven challenging. In this study we develop new transgenic tools to follow the fate of populations of cells in the regenerating bipinnaria larva of the sea star Patira minaita. We show that the larval serotonergic nervous system can regenerate following decapitation. Using a BAC-transgenesis approach with photoconvertible fluorescent proteins, we show that expression of the pan ectodermal marker, sox2, is induced in previously sox2 minus cells at the wound site, even when cell division is inhibited. sox2+ cells give rise to new sox4+ neural precursors that then proceed along an embryonic neurogenesis pathway to reform the anterior nervous systems. sox2+ cells contribute to only neural and ectoderm lineages, indicating that these progenitors maintain their normal, embryonic lineage restriction. This indicates that sea star larval regeneration uses a combination of existing lineage restricted stem cells, as well as respecification of cells into neural lineages, and at least partial reuse of developmental GRNs to regenerate their nervous system.

2021 ◽  
Author(s):  
Minyan Zheng ◽  
Olga Zueva ◽  
Veronica F Hinman

The ability to restore lost body parts following traumatic injury is a fascinating area of biology that challenges current understanding of the ontogeny of differentiation. The origin of new cells needed to regenerate lost tissue, and whether they are pluripotent stem cells, tissue-specific stem cells or have de- or trans- differentiated, remains one of the most important open questions in regeneration. Additionally, it is not clearly known whether developmental gene regulatory networks (GRNs) are reused to direct specification in these cells or whether regeneration specific networks are deployed. Echinoderms, including sea stars, have extensive ability for regeneration and have therefore been the subject of many thorough studies on the ultrastructural and molecular properties of cells needed for regeneration. However, the technologies for obtaining transgenic echinoderms are limited and tracking cells involved in regeneration, and thus identifying the cellular sources and potencies has proven challenging. In this study we develop new transgenic tools for cell tracking in the regenerating bipinnaria larva of the sea star Patira minaita. We show that the larval serotonergic nervous system can regenerate following decapitation. Using a BAC-transgenesis approach with photoconvertible fluorescent proteins, we show that expression of the pan ectodermal marker, sox2, is induced in previously sox2 minus cells at the wound site, even when cell division is inhibited. sox2+ cells give rise to new sox4+ neural precursors that then proceed along an embryonic neurogenesis pathway to reform the anterior nervous systems. sox2+ cells contribute to only neural and ectoderm lineages, indicating that these progenitors maintain their normal, embryonic lineage restriction. This indicates that sea star larval regeneration uses a combination of existing lineage-restricted stem cells, as well as respecification of cells into neural lineages, and at least partial reuse of developmental GRNs to regenerate their nervous system.


2021 ◽  
Author(s):  
Hugh F. Carter ◽  
Jeffrey R. Thompson ◽  
Maurice R. Elphick ◽  
Paola Oliveri

AbstractFree-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. Although transitory, these larvae often attain a remarkable degree of tissue complexity, with well-defined musculature and nervous systems. Amongst the best studied are larvae belonging to the phylum Echinodermata, but with work largely focused on the pleuteus larvae of sea urchins (class Echinoidea). The greatest diversity of larval strategies amongst echinoderms is found in the class Asteroidea (sea-stars), organisms that are rapidly emerging as experimental systems for genetic and developmental studies. However, the bipinnaria larvae of sea stars have only been studied in detail in a small number of species and the full complexity of the nervous system is, in particular, poorly understood. Here we have analysed embryonic development and bipinnaria larval anatomy in the common North Atlantic sea-star Asterias rubens, employing use of a variety of staining methods in combination with confocal microscopy. Importantly, the complexity of the nervous system of bipinnaria larvae was revealed in greater detail than ever before, with identification of at least three centres of neuronal complexity: the anterior apical organ, oral region and ciliary bands. Furthermore, the anatomy of the musculature and sites of cell division in bipinnaria larvae were analysed. Comparisons of developmental progression and molecular anatomy across the Echinodermata provided a basis for hypotheses on the shared evolutionary and developmental processes that have shaped this group of animals. We conclude that bipinnaria larvae appear to be remarkably conserved across ~200 million years of evolutionary time and may represent a strong evolutionary and/or developmental constraint for species utilizing this larval strategy.


2020 ◽  
Vol 17 (162) ◽  
pp. 20190700 ◽  
Author(s):  
Sina Heydari ◽  
Amy Johnson ◽  
Olaf Ellers ◽  
Matthew J. McHenry ◽  
Eva Kanso

The oral surface of sea stars is lined with arrays of tube feet that enable them to achieve highly controlled locomotion on various terrains. The activity of the tube feet is orchestrated by a nervous system that is distributed throughout the body without a central brain. How such a distributed nervous system produces a coordinated locomotion is yet to be understood. We develop mathematical models of the biomechanics of the tube feet and the sea star body. In the model, the feet are coupled mechanically through their structural connection to a rigid body. We formulate hierarchical control laws that capture salient features of the sea star nervous system. Namely, at the tube foot level, the power and recovery strokes follow a state-dependent feedback controller. At the system level, a directionality command is communicated through the nervous system to all tube feet. We study the locomotion gaits afforded by this hierarchical control model. We find that these minimally coupled tube feet coordinate to generate robust forward locomotion, reminiscent of the crawling motion of sea stars, on various terrains and for heterogeneous tube feet parameters and initial conditions. Our model also predicts a transition from crawling to bouncing consistently with recent experiments. We conclude by commenting on the implications of these findings for understanding the neuromechanics of sea stars and their potential application to autonomous robotic systems.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Sign in / Sign up

Export Citation Format

Share Document