scholarly journals Interplay between Quadrupolar and Magnetic Interactions in 5d1 Double Perovskite Ba2MgReO6 under Pressure

2022 ◽  
Vol 91 (1) ◽  
Author(s):  
Hiroto Arima ◽  
Yoshiaki Oshita ◽  
Daigorou Hirai ◽  
Zenji Hiroi ◽  
Kazuyuki Matsubayashi
2014 ◽  
Vol 70 (a1) ◽  
pp. C388-C388
Author(s):  
Mickael Morin ◽  
Denis Scheptyakov ◽  
Lukas Keller ◽  
Juan Rodríguez-Carvajal ◽  
Andrea Scaramucci ◽  
...  

Ferroelectric materials have been known for almost one century [1]. While their potential for applications was rapidly recognized, the possibility of combining ferroelectricity with magnetic order -preferably with ferromagnetism- has resulted in an enormous deal of interest during the last decade. Several new materials combining both types of order have been recently reported, although their promising multifunctionalities have been obscured by two facts: on one side, most of them are antiferromagnetic; on the other, their transition temperatures, typically below 40K, are too low for most practical applications. The oxygen-defficient double perovskite YBaFeCuO5 constitutes a remarkable exception. Spontaneous electric polarization has been recently reported to exist below an unusually high temperature of TC ≍ 200K [2] coinciding with the occurrence of a commensurate - to - incommensurate reorientation of the Fe3+ and Cu2+ magnetic moments [3,4]. From a more fundamental point of view the observation of incommensurable magnetic order in a tetragonal material at such high temperatures is rather surprising. In particular, the nature of the relevant competing magnetic interactions and its possible link to low dimensionality or geometrical frustration is not understood at present. Although the existence of the spin reorientation in this material is known since 1995 [3] the low temperature magnetic structure has not yet been solved. Using neutron powder diffraction we have recently been able to propose a spiral model which satisfactorily describes the measured magnetic intensities below TC. Further, investigation of the crystal structure showed the existence of small anomalies in the lattice parameters and some interatomic distances at TC. The relevance of these findings for the magnetoelectric coupling, the direction of the polarization, the modification of the different exchange paths in the structure and the stabilization of the incommensurate magnetic order below TC is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Khatua ◽  
T. Arh ◽  
Shashi B. Mishra ◽  
H. Luetkens ◽  
A. Zorko ◽  
...  

AbstractFrustrated magnets based on oxide double perovskites offer a viable ground wherein competing magnetic interactions, macroscopic ground state degeneracy and complex interplay between emergent degrees of freedom can lead to correlated quantum phenomena with exotic excitations highly relevant for potential technological applications. By local-probe muon spin relaxation ($$\mu$$ μ SR) and complementary thermodynamic measurements accompanied by first-principles calculations, we here demonstrate novel electronic structure and magnetic phases of Ba$$_{2}$$ 2 MnTeO$$_{6}$$ 6 , where Mn$$^{2+}$$ 2 + ions with S = 5/2 spins constitute a perfect triangular lattice. Magnetization results evidence the presence of strong antiferromagnetic interactions between Mn$$^{2+}$$ 2 + spins and a phase transition at $$T_{N}$$ T N = 20 K. Below $$T_{N}$$ T N , the specific heat data show antiferromagnetic magnon excitations with a gap of 1.4 K, which is due to magnetic anisotropy. $$\mu$$ μ SR reveals the presence of static internal fields in the ordered state and short-range spin correlations high above $$T_{N}$$ T N . It further unveils critical slowing-down of spin dynamics at $$T_{N}$$ T N and the persistence of spin dynamics even in the magnetically ordered state. Theoretical studies infer that Heisenberg interactions govern the inter- and intra-layer spin-frustration in this compound. Our results establish that the combined effect of a weak third-nearest-neighbour ferromagnetic inter-layer interaction (owing to double-exchange) and intra-layer interactions stabilizes a three-dimensional magnetic ordering in this frustrated magnet.


2021 ◽  
pp. 161624
Author(s):  
Richa Pokharel Madhogaria ◽  
Nicholas S. Bingham ◽  
Raja Das ◽  
Manh-Huong Phan ◽  
Hariharan Srikanth

2014 ◽  
Vol 70 (a1) ◽  
pp. C981-C981
Author(s):  
Yuichi Shimakawa

Cation ordering in transition-metal oxides often drastically modifies their properties. We focus on A-and-B-site-ordered quadruple perovskite-structure oxides AA'3B2B'2O12, in which transition-metal ions are included at the A', B, and B' sites in an ordered manner. In such compounds A'-A', A'-B, A'-B', and B-B' interactions compete with each other and play important role in giving rise to unusual properties. The A-and-B-site-ordered quadruple perovskite CaCu3Fe2Sb2O12with magnetic Fe3+at the B site and nonmagnetic Sb5+at the B' site was successfully synthesized under a high-pressure and high-temperature condition. The B-site Fe3+spin sublattice adapts a tetrahedral framework and the Fe3+-Fe3+antiferromagnetic interaction causes geometrical spin frustration as seen in the double perovskite Ca2FeSbO6. With the introduction of Cu2+into the A' site, the frustration is relieved by strong antiferromagnetic A'(Cu2+)-B(Fe3+) interaction, leading to a ferrimagnetic ordering below 160 K. When B'-site Sb5+was replaced with Re5+, another A-and-B-site-ordered quadruple perovskite CaCu3Fe2Re2O12was synthesized by a high-pressure technique. The compound contains magnetic Fe3+at the B site and Re5+at the B' sites, and strong antiferromagnetic A'(Cu2+)-B'(Re5+) interaction overcomes the A'(Cu2+)-B(Fe3+) interaction, leading to a ferrimagnetism with the ferromagnetic A'(Cu2+)-B(Fe3+) spin arrangement below 550 K. More importantly, the electronic structure of CaCu3Fe2Re2O12is half metallic and the compound shows large magnetoresistance by the spin-dependent transport.


1995 ◽  
Vol 5 (4) ◽  
pp. 501-515 ◽  
Author(s):  
J. A. Hodges ◽  
P. Bonville ◽  
P. Imbert ◽  
A. Pinatel-Phillipot

2018 ◽  
Author(s):  
Julian Steele ◽  
Masoumeh Keshavarz ◽  
Elke Debroye ◽  
Haifeng Yuan ◽  
Johan Hofkens ◽  
...  

Author(s):  
M. M. Glazov

This chapter is devoted to one of key phenomena in the field of spin physics, namely, resonant absorption of electromagnetic waves under conditions where the Zeeman splitting of spin levels in magnetic field is equal to photon energy. This method is particularly important for identification of nuclear spin effects, because resonance spectra provide fingerprints of different involved spin species and make it possible to distinguish different nuclear isotopes. As discussed in this chapter the nuclear magnetic resonance provides also an access to local magnetic fields acting on nuclear spins. These fields are caused by the magnetic interactions between the nuclei and by the quadrupole splittings of nuclear spin states in anisotropic crystalline environment. Manifestations of spin resonance in optical responses of semiconductors–that is, optically detected magnetic resonance–are discussed.


Sign in / Sign up

Export Citation Format

Share Document