scholarly journals Responses of nitrogen efficiency and antioxidant system of summer maize to waterlogging stress under different tillage

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11834
Author(s):  
Baizhao Ren ◽  
Juan Hu ◽  
Peng Liu ◽  
Bin Zhao ◽  
Jiwang Zhang

Waterlogging was one of the main abiotic stresses affecting maize yield and growth in the North China Plain, while ridge tillage effectually improved soil environment, enhanced crop stress resistance to waterlogging, and increased grain yield of waterlogged maize. In order to explore the responses of nitrogen (N) efficiency and antioxidant system of summer maize to waterlogging stress under different tillage, a field experiment was conducted to explore N use efficiency, leaf activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and malondialdehyde (MDA) content of waterlogged maize Denghai 605 (DH605) and Zhengdan 958 (ZD958) under different tillage system (ridge planting and flat planting). Our results showed that ridge tillage was beneficial to ameliorate waterlogging damages on antioxidant system by increasing SOD, POD, and CAT activities, and decreasing MDA content. Moreover, ridge tillage significantly increased N efficiency of waterlogged maize. N translocation amount (NTA), N translocation efficiency (NTE), N contribution proportion (NCP), N harvest index (NHI), and N use efficiency (NUE) of waterlogging treatment under ridge planting system (W-V3+R) for DH605 was increased by 108%, 69%, 60%, 8% and 16%, while ZD958 increased by 248%, 132%, 146%, 13% and 16%, respectively, compared to those of waterlogging treatment under flat planting system (W-V3). Ultimately, ridge tillage led to a significant yield improvement by 39% and 50% for DH605 and ZD958, respectively, compared to that of W-V3. In conclusion, ridge tillage was conducive to retard leaf aging, and enhance nitrogen efficiency, thereby resulting in a yield improvement of waterlogged summer maize.

Author(s):  
Osmar B. Scremin ◽  
José A. G. da Silva ◽  
Ângela T. W. de Mamann ◽  
Rubia D. Mantai ◽  
Ana P. Brezolin ◽  
...  

ABSTRACT The retainers of water in the soil can favor nitrogen (N) use efficiency in oat yield. The aim of the study was to determine if the conditions of use of the biopolymer hydrogel increase the fertilizer-N use efficiency in oat yield in succession systems of high and low residual-N release. In each succession system (soybean/oat, corn/oat), two experiments were conducted in 2014 and 2015, one to quantify biomass yield and the other to estimate grain yield and lodging. The design was randomized blocks with four replicates in a 4 x 4 factorial scheme for hydrogel doses (0, 30, 60 and 120 kg ha-1), added in the furrow with the seed, and N fertilizer doses (0, 30, 60 and 120 kg ha-1) applied in the fourth-expanded-leaf stage. The use of hydrogel increases N use efficiency in oat yield, especially under the conditions of 30 to 60 kg ha-1 of biopolymer; however, this effect is dependent on the succession system and on weather conditions.


Author(s):  
Ângela T. W De Mamann ◽  
José A. G. da Silva ◽  
Osmar B. Scremin ◽  
Rubia D. Mantai ◽  
Ari H. Scremin ◽  
...  

ABSTRACT Nitrogen use efficiency in wheat biomass and grain yields can be favored by the biopolymer hydrogel. The objective of the study was to analyze the use of the biopolymer hydrogel applied to the seed in the optimization of fertilizer-N on wheat biomass and grain yields, under different conditions of agricultural year and succession systems of high and reduced release of residual-N. In the study, two experiments were conducted, with different farming systems, soybean/wheat and maize/wheat, one to quantify the biomass yield rate and the other to determine grain yield. The experiments were conducted in the years 2014 and 2015, in a randomized block design with four replicates in a 4 x 4 factorial scheme, corresponding to hydrogel doses (0, 30, 60 and 120 kg ha-1) added in the groove along with the seed and N fertilizer rates (0, 30, 60 and 120 kg ha-1), applied as top-dressing. It is possible to improve the fertilizer-N efficiency by wheat using the biopolymer hydrogel for the production of biomass and grains. The highest wheat yield per kilogram of N supplied is obtained with 30 and 60 kg ha-1 of hydrogel, regardless of the year and succession system.


Author(s):  
José A. G. da Silva ◽  
Constantino J. Goi Neto ◽  
Sandra B. V. Fernandes ◽  
Rubia D. Mantai ◽  
Osmar B. Scremin ◽  
...  

ABSTRACT Nitrogen (N) is the nutrient most absorbed by the oat crop. Unfavorable climate conditions decrease its efficiency, generating instability and reduction in yield. The objective of this study was to improve N use efficiency in oat grain yield by the economic value of the product and of the input and by models that scale the stability, considering systems of succession of high and reduced residual-N release in favorable and unfavorable years for cultivation. The study was conducted in the years 2013, 2014 and 2015 in two systems of succession (soybean/oat, maize/oat) in randomized blocks with eight replicates, using the N-fertilizer doses of 0, 30, 60 and 120 kg ha-1. The N-fertilizer dose for maximum economic efficiency in oats should be considered based on the meteorological trends of the cultivation year. N use optimization by models that determine the stability is an innovative proposal to increase fertilization efficiency on the yield. The N-fertilizer dose of 60 kg ha-1 promotes greater efficiency with predictability and yield, regardless of the agricultural year and the system of succession.


1970 ◽  
Vol 33 (3) ◽  
pp. 439-448 ◽  
Author(s):  
MA Khaleque ◽  
NK Paul ◽  
Craig A Meisner

Wheat (Triticum aestivum L.) was planted as winter crop using raised bed and conventional planting system with four N levels at Regional Wheat Research Station, Rajshahi (latitude 28°75′ N and longitude 92°58′ E), during November to March in 2002 and 2003 to study N content in grain and straw, uptake of total nitrogen, N use efficiency, fertilizer recovery percentage and grain yield. The highest N content in grain and straw were obtained from bed planting system with Shatabdi at 150% N treatment. Maximum total N uptake by the plants was found in bed elevation as compared to conventional planting system. The highest N use efficiency was observed at N zero treatment as compared to applied N levels. Shatabdi noticed highest N use efficiency among the crop varieties. The maximum fertilizer recovery percentage was noted in Shatabdi under bed planting system. The highest grain yield (2,555 kg/ha) was produced from bed planting system. Significantly the highest grain yield (2,929 kg/ha) was found in Shatabdi. The highest grain yield (3,746 kg/ha) was found when 150% N was applied. In bed planting system, the highest grain yield (3,323 kg/ha) was produced when 150% N was applied. The lowest grain yield (1,177 kg/ha) was obtained in zero N treatment. Among the varieties, Shatabdi was the best performer in bed planting system due to maximum nitrogen and protein content in grain and straw, maximum N use efficiency and fertilizer recovery percentage. Key Words: Bed planting, N content, N use efficiency and fertilizer recovery percentage. doi:10.3329/bjar.v33i3.1603 Bangladesh J. Agril. Res. 33(3) : 439-448, September 2008


2021 ◽  
Vol 12 ◽  
Author(s):  
Baizhao Ren ◽  
Yanqing Guo ◽  
Peng Liu ◽  
Bin Zhao ◽  
Jiwang Zhang

In order to clarify the effects of urea-ammonium nitrate solution (UAN) on the yield, nitrogen-use efficiency (NUE), and N2O emissions of summer maize under the condition of water and fertilizer integration, different types of nitrogen fertilizer were selected, namely, ordinary urea (urea) and UAN. Our results showed that the application of UAN was beneficial to improve the dry matter accumulation and the distribution of summer maize. Compared with urea treatment, the total nitrogen accumulation of UAN treatment was increased by 15.8%, and the harvest index was increased by 5.5%. The partial productivity, agronomic use efficiency, and recovery rate of nitrogen for UAN treatment were also increased by 9.1, 19.8, and 31.2%, respectively, compared to those of urea treatment. The soil nitrogen dependence rate treated with UAN was significantly decreased by 13.6%, compared to that of urea treatment. In addition, UAN was beneficial to reduce N2O emissions. The N2O warming potential (GWPN2O) and N2O greenhouse gas intensity (GHGIN2O) of urea treatment were 39.3 and 52.4% higher, compared to those of UAN treatment. The improvement of dry matter accumulation and distribution and nitrogen efficiency for UAN treatment were beneficial to increase the grain yield by 9.1%, compared to that of urea treatment. In conclusion, under the fertigation, the application of UAN favors higher yield and nitrogen uptake, with less soil nitrogen residue, higher NUE, and better environmental effect.


2017 ◽  
Vol 23 (4) ◽  
pp. 419-425
Author(s):  
Karina Gonçalves da Silva ◽  
Mauricio Lamano Ferreira ◽  
Teresa Jocys ◽  
Shoey Kanashiro ◽  
Armando Reis Tavares

Nitrogen efficiency, along with associated indexes, is a widely used tool for assessing nutritional status in agricultural species. However, this parameter is not used in studies with ornamental plants, especially epiphytic cacti species. In particular, we know very little about the potential response of ornamental cacti to N absorption and use. Therefore, this study aimed to evaluate N use efficiency (NUE), along with its associated parameters, in three species of ornamental cacti under nitrogen nutrition. To accomplish this, Rhipsalis baccifera, Rhipsalis paradoxa and Hatiora salicornioides were fertilized by Hogland and Arnon nutrition solution modified and enriched with urea in the concentrations of 0, 33.3 or 66.6 mM N during 180 days. At the end of the experiment, efficiency indexes were calculated. Efficiency parameters varied according to species. R. baccifera presented the greatest dissimilarity among the species, with highest uptake efficiency (NUpE), but lowest use efficiency (NUtE) and biomass conversion (BCE). R. paradoxa presented high values for NUE, NUtE, BCE and physiological efficiency (NPE) at concentrations of 33.3 mM N, suggesting greater investment in biological processes with lower supply of N. H. salicornioides had the highest averages in most parameters measured. Our results show that these indexes provided important comparative baseline information on nutritional status and investment strategy, thus serving as a suitable analytical tool to increase knowledge about this group of ornamental plants.


2020 ◽  
Vol 51 (4) ◽  
pp. 1139-1148
Author(s):  
Othman & et al.

The research work was conducted in Izra’a Research station, which affiliated to the General Commission for Scientific Agricultural Research (GCSAR), during the growing seasons (2016 – 2017; 2017 – 2018), in order to evaluate the response of two durum wheat verities (Douma3 and Cham5) and two bread wheat varieties (Douma4 and Cham6) to Conservation Agriculture (CA) as a full package compared with Conventional Tillage system (CT) under rainfed condition using lentils (Variety Edleb3) in the applied crop rotation. The experiment was laid according to split-split RCBD with three replications. The average of biological yield, grain yield,  rainwater use efficiency and nitrogen use efficiency was significantly higher during the first growing season, under conservation agriculture in the presence of crop rotation, in the variety Douma3 (7466 kg. ha-1, and 4162kg. ha-1, 19.006 kg ha-1 mm-1,  39.62 kg N m-2respectively). The two varieties Douma3 and Cham6 are considered more responsive to conservation agriculture system in the southern region of Syria, because they recorded the highest grain yields (2561, 2385 kg ha-1 respectively) compared with the other studied varieties (Cham5 and Douma4) (1951 and 1724 kg ha-1 respectively). They also exhibited the highest values of both rainwater and nitrogen use efficiency.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 515
Author(s):  
Ying Ouyang ◽  
Gary Feng ◽  
Heidi Renninger ◽  
Theodor D. Leininger ◽  
Prem Parajuli ◽  
...  

Eucalyptus is one of the fastest growing hardwoods for bioenergy production. Currently, few modeling tools exist to simultaneously estimate soil hydrological processes, nitrogen (N) uptake, and biomass production in a eucalyptus plantation. In this study, a STELLA (Structural Thinking and Experiential Learning Laboratory with Animation)-based model was developed to meet this need. After the model calibration and validation, a simulation scenario was developed to assess eucalyptus (E. grandis × urophylla) annual net primary production (ANPP), woody biomass production (WBP), water use efficiency (WUE), and N use efficiency (NUE) for a simulation period of 20 years. Simulation results showed that a typical annual variation pattern was predicted for water use, N uptake, and ANPP, increasing from spring to fall and decreasing from fall to the following winter. Overall, the average NUE during the growth stage was 700 kg/kg. To produce 1000 kg eucalyptus biomass, it required 114.84 m3 of water and 0.92 kg of N. This study suggests that the STELLA-based model is a useful tool to estimate ANPP, WBP, WUE, and NUE in a eucalyptus plantation.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1459
Author(s):  
Heba S. A. Salama ◽  
Ali I. Nawar ◽  
Hassan E. Khalil ◽  
Ahmed M. Shaalan

The sequence of the preceding crops in a no-tillage farming system, could interact with the integrated use of mineral and organic nitrogen (N) sources in a way that improves the growth and productivity of the terminal maize crop, meanwhile, enhancing its N use efficiency (NUE). In the current study, six legume-cereal crop sequences, including faba bean, soybean, Egyptian clover, wheat, and maize were evaluated along two experimental rotations that ended up by planting the terminal maize crop. In addition, the effects of applying variable mineral nitrogen (MN) rates with and without the incorporation of farmyard manure (FYM) on the productive performance of maize and its NUE were tested. The field experiments were conducted in a no-tillage irrigated farming system in Northern Egypt, a location that is characterized by its arid, Mediterranean climate. Results revealed that increasing the legume component in the evaluated crop sequences, up to 75%, resulted in improved maize ear leaf area, 1000-grain weight, and harvest index, thus, a higher final grain yield, with the inclusion of Egyptian clover was slightly better than faba bean. Comparing the crop sequences with 50% legume contribution uncovered the positive effects of soybean preceding crop on the terminal maize crop. Substituting 25% of the applied MN with FYM resulted in similar maize yields to the application of the equivalent 100% MN rates. The fertilizer treatments significantly interacted with the crop sequences in determining the maize grain yield, where the highest legume crop contribution in the crop sequence (75%) equalized the effects of the different fertilizer treatments on maize grain yield. The integrated use of FYM with MN in maize fertilization improved the NUE compared to the application of MN alone. Comparing fertilization treatments with similar MN content, with and without FYM, revealed that the difference in NUE was attributed to the additional amount of FYM. In similar conditions to the current study, it is recommended to grow faba bean two years before maize, while Egyptian clover could be grown directly preceding maize growth, with frequent inclusion of soybean in the sequence, this could be combined with the application of an average of 200 kg MN ha−1 in addition to FYM.


2017 ◽  
Vol 8 (2) ◽  
pp. 328-332
Author(s):  
J. Zhang ◽  
Y. Miao ◽  
W.D. Batchelor

Over-application of nitrogen (N) in rice (Oryza sativaL.) production in China is common, leading to low N use efficiency (NUE) and high environmental risks. The objective of this work was to evaluate the ability of the CERES-Rice crop growth model to simulate N response in the cool climate of Northeast China, with the long term goal of using the model to develop optimum N management recommendations. Nitrogen experiments were conducted from 2011–2015 in Jiansanjiang, Heilongjiang Province in Northeast China. The CERES-Rice model was calibrated for 2014 and 2015 and evaluated for 2011 and 2013 experiments. Overall, the model gave good estimations of yield across N rates for the calibration years (R2=0.89) and evaluation years (R2=0.73). The calibrated model was then run using weather data from 2001–2015 for 20 different N rates to determine the N rate that maximized the long term marginal net return (MNR) for different N prices. The model results indicated that the optimum mean N rate was 120–130 kg N ha–1, but that the simulated optimum N rate varied each year, ranging from 100 to 200 kg N ha–1. Results of this study indicated that the CERES-Rice model was able to simulate cool season rice growth and provide estimates of optimum regional N rates that were consistent with field observations for the area.


Sign in / Sign up

Export Citation Format

Share Document