scholarly journals Ammonia-oxidizing bacterial communities are affected by nitrogen fertilization and grass species in native C4 grassland soils

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12592
Author(s):  
Jialin Hu ◽  
Jonathan D. Richwine ◽  
Patrick D. Keyser ◽  
Lidong Li ◽  
Fei Yao ◽  
...  

Background Fertilizer addition can contribute to nitrogen (N) losses from soil by affecting microbial populations responsible for nitrification. However, the effects of N fertilization on ammonia oxidizing bacteria under C4 perennial grasses in nutrient-poor grasslands are not well studied. Methods In this study, a field experiment was used to assess the effects of N fertilization rate (0, 67, and 202 kg N ha−1) and grass species (switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii)) on ammonia-oxidizing bacterial (AOB) communities in C4 grassland soils using quantitative PCR, quantitative reverse transcription-PCR, and high-throughput amplicon sequencing of amoA genes. Results Nitrosospira were dominant AOB in the C4 grassland soil throughout the growing season. N fertilization rate had a stronger influence on AOB community composition than C4 grass species. Elevated N fertilizer application increased the abundance, activity, and alpha-diversity of AOB communities as well as nitrification potential, nitrous oxide (N2O) emission and soil acidity. The abundance and species richness of AOB were higher under switchgrass compared to big bluestem. Soil pH, nitrate, nitrification potential, and N2O emission were significantly related to the variability in AOB community structures (p < 0.05).

Author(s):  
Adrián Bozal-Leorri ◽  
Mario Corrochano-Monsalve ◽  
Luis Miguel Arregui ◽  
Pedro M. Aparicio-Tejo ◽  
Carmen González-Murua

Abstract Background The increasing demand for food production has led to a tenfold increase in nitrogen (N) fertilizer use since the Green Revolution. Nowadays, agricultural soils have been turned into high-nitrifying environments that increase N pollution. To decrease N losses, synthetic nitrification inhibitors (SNIs) such as 3,4-dimethylpyrazole phosphate (DMPP) have been developed. However, SNIs are not widely adopted by farmers due to their biologically limited stability and soil mobility. On the other hand, allelopathic substances from root exudates from crops such as sorghum are known for their activity as biological nitrification inhibitors (BNIs). These substances are released directly into the rhizosphere. Nevertheless, BNI exudation could be modified or even suppressed if crop development is affected. In this work, we compare the performance of biological (sorghum crop) and synthetic (DMPP) nitrification inhibitors in field conditions. Results Sorghum crop BNIs and DMPP prevented an increase in the abundance of ammonia-oxidizing bacteria (AOB) without affecting the total bacterial abundance. Both nitrification inhibitors maintained similar soil NH4+ content, but at 30 days post-fertilization (DPF), the sorghum BNIs resulted in higher soil NO3− content than DMPP. Even so, these inhibitors managed to reduce 64% and 96%, respectively, of the NO3−-N/NH4+-N ratio compared to the control treatment. Similar to soil mineral N, there were no differences in leaf δ15N values between the two nitrification inhibitors, yet at 30 DPF, δ15N values from sorghum BNI were more positive than those of DMPP. N2O emissions from DMPP-treated soil were low throughout the experiment. Nevertheless, while sorghum BNIs also maintained low N2O emissions, they were associated with a substantial N2O emission peak at 3 DPF that lasted until 7 DPF. Conclusions Our results indicate that while sorghum root exudates can reduce nitrification in field soil, even at the same efficiency as DMPP for a certain amount of time, they are not able to prevent the N pollution derived from N fertilization as DMPP does during the entire experiment. Graphic Abstract


2006 ◽  
Vol 73 (2) ◽  
pp. 485-491 ◽  
Author(s):  
Haiyan Chu ◽  
Takeshi Fujii ◽  
Sho Morimoto ◽  
Xiangui Lin ◽  
Kazuyuki Yagi ◽  
...  

ABSTRACT The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the α subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils.


2009 ◽  
Vol 38 (spe) ◽  
pp. 160-169
Author(s):  
Kenneth Paul Vogel ◽  
Cesar Heraclides Behling Miranda

In the early 1970's research was initiated by the cooperative USDA-ARS and University of Nebraska grass breeding program to develop perennial grasses adapted to the mid-continental USA with improved forage quality. The initial breeding and animal evaluation work focused on switchgrass (Panicum virgatum) but has since expanded to several other warm-and cool-season perennial grasses. The in vitro dry matter digestibility (IVDMD) test was selected as the measure of forage quality that was used in the breeding work because of its previous successful application on improving bermudagrass (Cynodon dactylon). In all of the grass species that we have studied to date, there is genetic variability for IVDMD and forage yield. IVDMD is a heritable trait with narrow sense heritability's ranging from 0.2 to 0.4 which are similar to heritability's for forage yield. If significant improvements or difference in IVDMD (> 1%) can be detected in small plot trials (r=6), differences in cattle gains among experimental strains or cultivars can be demonstrated in grazing trials. Averaged over both cool- and warm-season grasses, a 1% increase in in vitro dry matter digestibility (IVDMD) generally leads to a 3.2% increase in average daily gains of beef cattle. Because increased IVDMD generally does not result in a decrease in forage yield, this results in a net increase in animal production per hectare of land.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1214
Author(s):  
Hendrik P. J. Smit ◽  
Thorsten Reinsch ◽  
Pieter A. Swanepoel ◽  
Ralf Loges ◽  
Christof Kluß ◽  
...  

Nitrogen fertilization, irrigation and concentrate feeding are important factors in rotational pasture management for dairy farms in South Africa. The extent to which these factors affect environmental efficiency is subject to current and intense debate among scientists. A three-year field study was conducted to investigate the yield response of different N-fertilizer treatments (0 (N0), 220 (N20), 440 (N40), 660 (N60) and 880 (N80) kg N ha−1 year−1) on grazed pastures and to calculate the carbon footprint (CF) of milk produced. Excessive N-fertilization (N60 and N80) did not increase herbage dry matter and energy yields from pastures. However, N80 indicated the highest N-yield but at the same time also the highest N surpluses at field level. A maximum fertilizer rate of 220 kg ha−1 year−1 (in addition to excreted N from grazing animals) appears sufficient to ensure adequate herbage yields (~20 t DM ha−1 year−1) with a slightly positive field-N-balance. This amount will prevent the depletion of soil C and N, with low N losses to the environment, where adequate milk yields of ~17 t ECM ha−1 with a low CF (~1.3 kg CO2 kg ECM−1) are reached. Methane from enteric fermentation (~49% ± 3.3) and N2O (~16% ± 3.2) emissions from irrigated pastures were the main contributors to the CF. A further CF reduction can be achieved by improved N-fertilization planning, low emission irrigation techniques and strategies to limit N2O emissions from pasture soils in South Africa.


2017 ◽  
Vol 9 (3) ◽  
pp. 233
Author(s):  
Kyriakos Giannoulis ◽  
Dimitrios Bartzialis ◽  
Elpiniki Skoufogianni ◽  
Nicholaos Danalatos

Panicum virgatum could produce cattle feed with lower costs due to the low input requirements and its perennial nature. Dry biomass yield vs. N-P-K nutrient uptake relations as well as the N-mineralization and the N-fertilization recovery fraction for Panicum virgatum (cv. Alamo) were determined under field conditions for four N-fertilization (0, 80, 160 and 240 kg ha-1) and two irrigation levels (0 and 250 mm), οn two soils in central Greece with rather different moisture status. It was found that the dry fodder yield on the aquic soil may reach 14 t ha-1 using supplemental irrigation; while on the xeric soil a lower yield of 9-10 t ha-1 may be produced only under supplemental irrigation. Moreover, the average N, P and K concentration was 1.3%, 0.14% and 1.3% in leaves, and 0.5%, 0.85%, and 1.5% in stems, respectively, showing the very low crop requirements. Furthermore, linear biomass yield-nutrient uptake relationships were found with high R2, pointing to nutrient use efficiency of 132 and 75 kg kg-1, for N and K respectively. The base N-uptake ranged from 71-74 kg ha-1 on the aquic to 60 kg ha-1 or less on the xeric soil. Finally, it was found that N-recovery fraction was 20% on the aquic soil and lower on the xeric. Therefore, it could be conclude that Panicum virgatum seems to be a very promising crop for fodder production and its introduction in land use systems (especially οn aquic soils of similar environments) should be taken into consideration.


1982 ◽  
Vol 62 (3) ◽  
pp. 657-665 ◽  
Author(s):  
R. W. TAYLOR ◽  
D. W. ALLINSON

Animal production in New England has been limited by inadequate forage during mid- to late summer when cool-season grasses are in summer dormancy. Big bluestem (Andropogon gerardi Vitman), indiangrass [Sorghastrum nutans (L.) Nash] and switchgrass (Panicum virgatum L.) are warm-season grasses that may be a perennial source of summer forage. Since production of these warm-season grasses would be limited to the less fertile soils of the region, a greenhouse study was conducted to examine the growth and quality of these species in five acid, infertile soils as well as fertilizer-amended soils. The soils were fertilized with limestone (L), limestone plus nitrogen (LN), limestone, nitrogen plus phosphorus (LNP), and limestone, nitrogen, phosphorus plus potassium (LNPK). Limestone was applied to adjust soils to a pH of 6.5. Fertilizer was applied at rates of 45, 117 and 111 kg/ha of N, P and K, respectively. First harvest yields were greatest for switchgrass and big bluestem, but indiangrass produced significantly greater yields than either of the other grasses in the second harvest. In both harvests, the yields of all grasses were greatest under the LNP and LNPK fertility regimes. Nitrogen, without P, did not significantly increase yields above the control treatment in the first harvest. Yield responses to P fertilization varied with soils. Although P appeared to be the limiting factor insofar as growth was concerned, the yield response from P fertilization would probably be limited without N fertilization. Indiangrass was significantly higher in crude protein and K concentration and significantly lower in Ca concentration than big bluestem and switchgrass. Phosphorus concentrations were below the recommended levels for ruminant nutrition.


2021 ◽  
Vol 901 (1) ◽  
pp. 012007
Author(s):  
V M Kosolapov ◽  
V I Cherniavskih ◽  
E V Dumacheva ◽  
M N Marinich ◽  
L D Sajfutdinova ◽  
...  

Abstract We evaluated the stability of perennial legume and cereal grass species in artificial plant communities on permanent anti-erosion watercourses in the agroecosystems of the Belgorod region with active development of linear soil erosion. In the conditions of steppe and forest-steppe zones of the Belgorod region on permanently grassed watercourses in 2017-2019. varieties of perennial leguminous and cereal grasses: ‘Krasnoyaruzhskaya 1’ and ‘Krasnoyaruzhskaya 2’ (Medicago varia), ‘Kazatsky’ (Trifolium pratense), ‘Olshanka’ and ‘Ivica’ (Festuca arundinacea), ‘Streletsky’ and ‘Stepnyak’ (Lolium perenne)) obtained using local genetic material were studied. All varieties showed their resistance in agro-ecosystems with active development of linear erosion in the forest-steppe and steppe zones. Projective cover on watercourses in the steppe zone in all variants of experience was on average 83,4 %, in the forest-steppe zone - 86,3 %. In the third year of the tests on permanently irrigated watercourses in the steppe zone, the share of cereal and legume grass species was quite high and varied from 88 % in the variant M. varia + Onobrychis arenaria to 92 % in the variants M. varia + Bromopsis inermis and O. arenaria. In the forest-steppe zone, the share of cereal and legume grass species varied from 86 % in the variant L. perenne to 94 % in the variant L. perenne + B. inermis.


2016 ◽  
Vol 16 ◽  
pp. 275-279
Author(s):  
E.J. Hall ◽  
R. Reid ◽  
B. Clark ◽  
R. Dent

In response to the need to find better adapted and more persistent perennial pasture plants for the dryland pastures in the cool-temperate low to medium rainfall (500-700 mm) regions, over 1000 accessions representing 24 species of perennial legumes and 64 species of perennial grasses, were introduced, characterised and evaluated for production and persistence under sheep grazing at sites throughout Tasmania. The work has identified four alternative legume species in Talish Clover (Trifolium tumens). Caucasian Clover (T. ambiguum), Stoloniferous Red Clover (T. pratense var. stoloniferum), Lucerne x Yellow Lucerne Hybrid (Medicago sativa x M.sativa subsp. falcata); and two grass species in Coloured Brome (Bromus coloratus) and Hispanic Cocksfoot (Dactylis glomerata var hispanica). Keywords: persistence, perennial grass, perennial legume


2012 ◽  
Vol 66 (2) ◽  
pp. 223-233 ◽  
Author(s):  
Nada Babovic ◽  
Gordana Drazic ◽  
Ana Djordjevic

There is an increasing interest in perennial grasses as a renewable source of bioenergy and feedstock for second-generation cellulosic biofuels. Switchgrass (Panicum virgatum) and miscanthus (Miscanthus?giganteus), belonging to the parennial grasses group, are the major lignocellulosic materials being studied today as sources for direct energy production, biofuels, bioremediation and other. They have the ability to grow at low cost on marginal land where they will not compete with the traditional food crops. Miscanthus?giganteus possesses a number of advantages in comparison with the other potential energy crops such as are: high yields, low moisture content at harvest, high water and nitrogen use efficiencies, low need for annual agronomic inputs such as fertilizers and pesticides, high cellulose content, non-invasive character, low susceptibility to pests and diseases and broad adaptation to temperate growing environments. The main problems are low rate of survival during the first winter after the creation of plantation and the relatively high establishment costs. Miscanthus?giganteus is grown primarily for heat and electricity generation but can also be used to produce transport fuels. Miscanthus biomass has a very good combustion quality due to its low water concentration as well as its low Cl, K, N, S and ash concentrations compared to other lignocellulose plants. It is expected that miscanthus will provide cheaper and more sustainable source of cellulose for production of bioethanol than annual crops such as corn. Miscanthus has great promise as a renewable energy source, but it can only be realised when the grass production has been optimised for large-scale commercial cultivation. However, further research is still needed to optimise agronomy of miscanthus, to develop the production chain and pre-treatment as well as to optimise energy conversation route to produce heat, electricity, and/or fuels from biomass, if miscanthus is to compete with fossil fuel use and be widely produced.


Sign in / Sign up

Export Citation Format

Share Document