scholarly journals Spatiotemporal changes, trade-offs, and synergistic relationships in ecosystem services provided by the Aral Sea Basin

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12623
Author(s):  
Chao liang Chen ◽  
Xi Chen ◽  
Jing Qian ◽  
Zengyun Hu ◽  
Jun Liu ◽  
...  

Intense human activities in the Aral Sea Basin have changed its natural distribution of land use. Although they provide certain economic benefits, these anthropogenic influences have led to the rapid shrinkage of the Aral Sea, severely affecting the region’s ecosystem. However, the spatiotemporal variability of the Aral Sea Basin’s Ecosystem Service Values (ESVs) is not well understood. In this study, we used 300-meter resolution land use maps from 1995, 2005, and 2015 and the Patch-generating Land Use Simulation (PLUS) model to predict the future land use patterns of the Aral Sea Basin in 2025. Simultaneously, we divided the Aral Sea Basin into three regions (upstream, midstream, and downstream) and evaluated the dynamic responses of their ESVs to Land Use and Land Cover (LULC) changes. The changes in the types of ecosystem services provided by the Aral Sea Basin, their trade-off, and synergistic relationships were analyzed by weighting their associations. The results showed that from 1995 to 2025, the grassland, urban, and cropland areas in the Aral Sea Basin will expand rapidly, while the areas covered by water bodies will shrink rapidly, causing a total loss of 31.97 billion USD. The downstream loss of 27.79 billion USD of the total amount is mainly caused by the conversion of water bodies to bare land. The ESVs of the middle region will increase by 6.81 billion USD, mainly due to the large amount of water extracted from the Amu Darya and Syr Darya Rivers in the middle regions of the Aral Sea Basin that are used to reclaim cultivated land and expand urban areas. The ESVs and areas experiencing land use changes in the upper regions are relatively small. At the same time, our results show that biodiversity, food production, and water regulation are the major ecosystem service functions, and account for 79.46% of the total ESVs. Of the ecosystem service relationships in the Aral Sea Basin, synergy accounts for 55.56% of the interactions, with a fewer amount of trade-off exchanges. This synergy mainly exists in the relationships involving water regulation, waste treatment and recreation, and culture and tourism. We propose protection measures that will coordinate eco-environmental protection efforts with socioeconomic development in the region in order to achieve the United Nations’ sustainable development goals.

2021 ◽  
Author(s):  
Jing He ◽  
Yang Yu ◽  
Lingxiao Sun ◽  
Haiyan Zhang ◽  
Ireneusz Malik ◽  
...  

Abstract The Aral Sea started shrinking since the 1960s due to natural factors and human activities; however, the relationship between land cover change and ecosystem services (ES) in the Aral Sea basin has not been fully studied. To analyze and explore the spatiotemporal variation characteristics of ecosystem service values (ESVs) in this region, we used the European Space Agency CCI Global Land Cover product with a spatiotemporal resolution of 300 × 300 m and the annual scale. The land use data of 1993, 1998, 2003, 2008, 2013, and 2018 in the study area were extracted, the study area’s ESV in the corresponding years was calculated, and the temporal and spatial evolution characteristics were analyzed. Additionally, the change rate and sensitivity were analyzed. The results revealed that the area of urban land, bare land, grassland, wetland, and cropland in the Aral Sea basin increased from 1993 to 2018; water body and forestland decreased. The integrated value of water bodies, cropland, and grassland ES accounted for more than 96% of the total ESV; the change rate of land use types differed. Urban land and water changed the fastest; cultivated land, woodland, grassland, and wetland changed the slowest. From 1993 to 2018, the total ESV of the Aral Sea basin decreased from 455.10 to 414.56 billion (Overall decrease = − 8.91%). The ESV study shows that the water area decreased sharply from 1993 to 2018, resulting in a loss of USD 46.84 billion. Biodiversity, food production, and water regulation were the main ES, accounting for 78.5% of the total ESV. The ESV of the Aral Sea basin declined from 1993 to 2018, and significant differences were observed among its regions. Some regions should thus focus on this aspect. A close correlation was observed between the ESV and land use. Hence, effective land use policies can control the expansion of cropland; protect water bodies, ecological environments, grassland, and forestland; and promote a more sustainable ecosystem.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7665 ◽  
Author(s):  
Jiangyue Li ◽  
Hongxing Chen ◽  
Chi Zhang ◽  
Tao Pan

Acute farmland expansion and rapid urbanization in Central Asia have accelerated land use/land cover changes, which have substantial effects on ecosystem services. However, the spatiotemporal variations in ecosystem service values (ESVs) in Central Asia are not well understood. Here, based on land use products with 300-m resolution for the years 1995, 2005 and 2015 and transfer methodology, we predicted land use and land cover (LULC) for 2025 and 2035 using CA-Markov, assessed changes in ESVs in response to LULC dynamics, and explored the elasticity of the response of ESV to LULC changes. We found significant expansions of cropland (+22.10%) and urban areas (+322.40%) and shrinking of water bodies (−38.43%) and bare land (−9.42%) during 1995–2035. The combined value of ecosystem services of water bodies, cropland, and grassland accounted for over 90% of the total ESVs. Our study showed that cropland ecosystem services value increased by 93.45 billion US$ from 1995 to 2035, which was mainly caused by the expansion of cropland area. However, the area of water bodies decreased sharply during 1995–2035, causing a loss of 64.38 billion US$. Biodiversity, food production and water regulation were major ecosystem service functions, accounting for 80.52% of the total ESVs. Our results demonstrated that effective land-use policies should be made to control farmland expansion and protect water bodies, grassland and forestland for more sustainable ecosystem services.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2072
Author(s):  
Ying Fang ◽  
Tianlin Zhai ◽  
Xiaodong Zhao ◽  
Kun Chen ◽  
Baishu Guo ◽  
...  

Ecosystem services are characterized by region and scale, and contribute to human welfare. Taking Yantai city, a typical bay city in China, as the example, its three representative ecosystem services: food supply (FS), carbon sequestration (CS) and water yield (WY) were chosen as study targets. Based on analyzation of six different aspects of the supply and variation characteristic of demand, this study tried to propose advices for comprehensive improvement of ecosystem services for spatial optimization. The results showed that: (1) ecosystem services supply was strong in central and southern areas of Yantai, while the northern coastal areas were relatively weak; (2) synergistic relationships were found of FS-CS, FS-WY and CS-WY both in 2009 and 2015, with the strongest one for FS-WY. Additionally, in the synergistic relationships, each pair of ecosystem services was dominated by one ecosystem service; (3) most of the three pairs of synergistic relationships had the tendency to strengthen with larger scales; (4) four ecosystem demands changing areas were observed and comprehensive improvement suggestions for them were proposed. This work provides a new attempt to improve ecosystem services based on its supply-demand relationship, which will give a baseline reference for related studies in Yantai city, as well as other similar bay cities.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 501
Author(s):  
Xuege Wang ◽  
Fengqin Yan ◽  
Yinwei Zeng ◽  
Ming Chen ◽  
Bin He ◽  
...  

Extensive urbanization around the world has caused a great loss of farmland, which significantly impacts the ecosystem services provided by farmland. This study investigated the farmland loss due to urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China from 1980 to 2018 based on multiperiod datasets from the Land Use and Land Cover of China databases. Then, we calculated ecosystem service values (ESVs) of farmland using valuation methods to estimate the ecosystem service variations caused by urbanization in the study area. The results showed that 3711.3 km2 of farmland disappeared because of urbanization, and paddy fields suffered much higher losses than dry farmland. Most of the farmland was converted to urban residential land from 1980 to 2018. In the past 38 years, the ESV of farmland decreased by 5036.7 million yuan due to urbanization, with the highest loss of 2177.5 million yuan from 2000–2010. The hydrological regulation, food production and gas regulation of farmland decreased the most due to urbanization. The top five cities that had the largest total ESV loss of farmland caused by urbanization were Guangzhou, Dongguan, Foshan, Shenzhen and Huizhou. This study revealed that urbanization has increasingly become the dominant reason for farmland loss in the GBA. Our study suggests that governments should increase the construction of ecological cities and attractive countryside to protect farmland and improve the regional ESV.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 173
Author(s):  
Changjun Gu ◽  
Yili Zhang ◽  
Linshan Liu ◽  
Lanhui Li ◽  
Shicheng Li ◽  
...  

Land use and land cover (LULC) changes are regarded as one of the key drivers of ecosystem services degradation, especially in mountain regions where they may provide various ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however, the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE) and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal. Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis showed that the expansions of cropland were the major drivers of the forest cover change in the KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment existed in the KSL during the study period. The observed forest degradation directly influenced the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in 2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by 1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.


One Ecosystem ◽  
2020 ◽  
Vol 5 ◽  
Author(s):  
Dirk Vrebos ◽  
Jan Staes ◽  
Steven Broekx ◽  
Leo de Nocker ◽  
Karen Gabriels ◽  
...  

Since the early 2000s, there have been substantial efforts to transform the concept of ecosystem services into practice. Spatial assessment tools are being developed to evaluate the impact of spatial planning on a wide range of ecosystem services. However, the actual implementation in decision-making remains limited. To improve implementation, tools that are tailored to local conditions can provide accurate, meaningful information. Instead of a generic and widely-applicable tool, we developed a regional, spatially-explicit tool (ECOPLAN-SE) to analyse the impact of changes in land use on the delivery of 18 ecosystem services in Flanders (Belgium). The tool incorporates ecosystem services relevant to policy-makers and managers and makes use of detailed local data and knowledge. By providing an easy-to-use tool, including the required spatial geodatasets, time investment and the learning curve remain limited for the user. With this tool, constraints to implement ecosystem service assessments in local decision-making are drastically reduced. We believe that region-specific decision support systems, like ECOPLAN-SE, are indispensable intermediates between the conceptual ecosystem service frameworks and the practical implementation in planning processes.


2021 ◽  
Author(s):  
Tiantian Chen ◽  
Li Peng ◽  
Qiang Wang

Abstract The Grain to Green Program (GTGP), as a policy tool for advancing ecological progress, has been operating for 20 years and has played an important role in improving ecosystem service values. However, there are few studies on the trade-off/synergy changes in ecosystem services during the implementation of the GTGP and how to select the optimal scheme for regional ecological security based on the trade-off relationship. Thus, we took the Chengdu-Chongqing urban agglomeration (CCUA) in southwestern China as the study area; we used multisource data and the corresponding models and methods to estimate the regional food production, carbon sequestration, water yield, soil conservation and habitat quality services. Then, we clarified the trade-off/synergy relationships among ecosystem services from 2000 to 2015 by spatial analysis and statistical methods and evaluated the influential mechanism of the GTGP on trade-offs between ecosystem services. Finally, different risk scenarios were constructed by the ordered weighted average algorithm (OWA), and the regional ecological security pattern was simulated under the principle of the best protection efficiency and the highest trade-off degree. We found that (1) the trade-offs/synergies of regional ecosystem services changed significantly from 2000 to 2015. Among them, food production, water yield and soil conservation have always had trade-off relationships, while carbon sequestration, soil conservation and habitat quality have all had synergistic relationships. The relationships between carbon sequestration and water yield and food production changed from non-correlated to trade-off/synergistic, and the relationship between habitat quality and food production and water yield was not obvious. (2) Except for carbon sequestration service, the trade-off intensity between other ecosystem services decreased, indicating that the change trend of ecosystem services in the same direction was obvious. (3) The GTGP has been an important factor affecting the trade-off intensity of regional ecosystem services. On the one hand, it has strengthened the synergistic relationships among carbon sequestration, soil conservation and habitat quality; on the other hand, it has increased the constraints of water resources on soil conservation and vegetation restoration. (4) The decision risk coefficient α = 1.6 was the most suitable scenario, the total amount of regional ecosystem services was high, and the allocation was balanced under this scenario. The ecological security area corresponding to this scenario was also the area with high carbon sequestration and habitat quality services. The purpose of this study was to provide a scientific reference for the precise implementation of the GTGP.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2706 ◽  
Author(s):  
Anjana Ekka ◽  
Saket Pande ◽  
Yong Jiang ◽  
Pieter van der Zaag

The process of development has led to the modification of river landscapes. This has created imbalances between ecological, economic, and socio-cultural uses of ecosystem services (ESs), threatening the biotic and social integrity of rivers. Anthropogenic modifications influence river landscapes on multiple scales, which impact river-flow regimes and thus the production of river ESs. Despite progress in developing approaches for the valuation ecosystem goods and services, the ecosystem service research fails to acknowledge the biophysical structure of river landscape where ecosystem services are generated. Therefore, the purpose of this review is to synthesize the literature to develop the understanding of the biocomplexity of river landscapes and its importance in ecosystem service research. The review is limited to anthropogenic modifications from catchment to reach scale which includes inter-basin water transfer, change in land-use pattern, sub-surface modifications, groundwater abstractions, stream channelization, dams, and sand mining. Using 86 studies, the paper demonstrates that river ESs largely depend on the effective functioning of biophysical processes, which are linked with the geomorphological, ecological, and hydrological characteristics of river landscapes. Further, the ESs are linked with the economic, ecological, and socio-cultural aspect. The papers show that almost all anthropogenic modifications have positive impact on economic value of ESs. The ecological and socio-cultural values are negatively impacted by anthropogenic modifications such as dams, inter-basin water transfer, change in land-use pattern, and sand mining. The socio-cultural impact of ground-water abstraction and sub-surface modifications are not found in the literature examined here. Further, the ecological and socio-cultural aspects of ecosystem services from stakeholders’ perspective are discussed. We advocate for linking ecosystem service assessment with landscape signatures considering the socio-ecological interactions.


Author(s):  
Yuejuan Yang ◽  
Kun Wang ◽  
Di Liu ◽  
Xinquan Zhao ◽  
Jiangwen Fan ◽  
...  

Being subject to climate change and human intervention, the land-use pattern in the agro-pastoral ecotone of Northern China has undergone complex changes over the past few decades, which may jeopardize the provision of ecosystem services. Thus, for sustainable land management, ecosystem services should be evaluated and monitored. In this study, based on Landsat TM/ETM data, we quantitatively evaluated the losses of ecosystem service values (ESV) in three sections of the agro-pastoral ecotone from 1980–2015. The results were as follows: (1) the main characteristic of the land conversions was that a large area of grassland was converted into cultivated land in the agro-pastoral ecotone; (2) on the spatial scale, the ESV losses of the agro-pastoral ecotone can be called an “inclined surface” in the direction of the northeast to southwest, and the northeastern section of the agro-pastoral ecotone lost more ESV than the middle and northwest sections (p < 0.05), on the temporal scale, the order of losses was 1990–2000 > 1980–1990 > 2000–2015; (3) the agro-pastoral ecotone lost more ESV, which was mainly due to four kinds of land conversion, which were grassland that was transformed into cultivated land, grassland transformed into unused land, grassland transformed into built-up areas, and cultivated land transformed into built-up areas; (4) although these land conversions were curbed after the implementation of protection policies at the end of the 1990s, due to reduced precipitation and increasing temperatures, the agro-pastoral ecotone will face a more severe situation in the future; and, (5) during the period of 1990–2015, the overall dynamic processes of increasing population gradually expanded to the sparsely populated pastoral area. Therefore, we believe that human interventions are the main cause of ecological deterioration in the agro-pastoral ecotone. This study provides references for fully understanding the regional differences in the ecological and environmental effects of land use change and it helps to objectively evaluate ecological civilization construction in the agro-pastoral ecotone of Northern China.


Sign in / Sign up

Export Citation Format

Share Document