scholarly journals Ridge Augmentation Is a Prerequisite for Successful Implant Placement: A Literature Review

Cureus ◽  
2022 ◽  
Author(s):  
Anilkumar R ◽  
Rekha R Koduganti ◽  
Tata Sai Lakshmi Harika ◽  
Haripriya Rajaram
Author(s):  
Noha El-Wassefy ◽  
Lars Sennerby ◽  
Dhoom SIngh Mehta ◽  
Thiago De Santana Santos

“Osseointegration” as formulated by Alberktson is crucial for implant survival and success. Osseointegration is a measure of implant stability. Measuring implant stability helps to arrive at decisions as to loading of an implant, allows choice of protocol on a patient to patient basis and provides better case documentation. A successful implant reflects good bone to implant contact and is determined by implant stability both primary and secondary. Implant stability is achieved at two different stages – primary (immediately after implant placement) and secondary (3-4 months after implant placement). Implant stability has been confirmed to affect the process of osseointegration and therefore is essential to understand the methods to measure implant stability and factors influencing. Various methods are developed to assess implant stability which suggests the prognosis of an implant.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Craig E. Hofferber ◽  
J. Cameron Beck ◽  
Peter C. Liacouras ◽  
Jeffrey R. Wessel ◽  
Thu P. Getka

Abstract Background The purpose of this study was to evaluate the volumetric changes in partially edentulous alveolar ridges augmented with customized titanium ridge augmentation matrices (CTRAM), freeze-dried bone allograft, and a resorbable collagen membrane. Methods A pre-surgical cone beam computed tomography (CBCT) scan was obtained for CTRAM design/fabrication and to evaluate pre-surgical ridge dimensions. Ridge augmentation surgery using CTRAM, freeze-dried bone allograft, and a resorbable collagen membrane was performed at each deficient site. Clinical measurements of the area of augmentation were made at the time of CTRAM placement and re-entry, and a 2nd CBCT scan 7 months after graft placement was used for volumetric analysis. Locations of each CTRAM in situ were also compared to their planned positions. Re-entry surgery and implant placement was performed 8 months after CTRAM placement. Results Nine subjects were treated with CTRAM and freeze-dried bone allograft. Four out of the nine patients enrolled (44.4%) experienced premature CTRAM exposure during healing, and in two of these cases, CTRAM were removed early. Early exposure did not result in total graft failure in any case. Mean volumetric bone gain was 85.5 ± 30.9% of planned augmentation volume (61.3 ± 33.6% in subjects with premature CTRAM exposure vs. 104.9% for subjects without premature exposure, p = 0.03). Mean horizontal augmentation (measured clinically) was 3.02 mm, and vertical augmentation 2.86 mm. Mean surgical positional deviation of CTRAM from the planned location was 1.09 mm. Conclusion The use of CTRAM in conjunction with bone graft and a collagen membrane resulted in vertical and horizontal bone gain suitable for implant placement.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3828
Author(s):  
Jung-Gu Ji ◽  
Jung-A Yu ◽  
Seong-Ho Choi ◽  
Dong-Woon Lee

Vertical ridge augmentation for long-term implant stability is difficult in severely resorbed areas. We examined the clinical, radiological, and histological outcomes of guided-bone regeneration using novel titanium-reinforced microporous expanded polytetrafluoroethylene (MP-ePTFE) membranes. Eighteen patients who underwent implant placement using a staged approach were enrolled (period: 2018–2019). Vertical ridge augmentation was performed in areas with vertical bone defects ≥ 4 mm. Twenty-six implant fixtures were placed in 14 patients. At implant placement six fixtures had relatively low stability. On cone-beam computed tomography, the average vertical changes were 4.2 ± 1.9 (buccal), 5.9 ± 2.7 (central), and 4.4 ± 2.8 mm (lingual) at six months after vertical ridge augmentation. Histomorphometric analyses revealed that the average proportions of new bone, residual bone substitute material, and soft tissue were 34.91 ± 11.61%, 7.16 ± 2.74%, and 57.93 ± 11.09%, respectively. Stable marginal bone levels were observed at 1-year post-loading. The residual bone graft material area was significantly lower in the exposed group (p = 0.003). There was no significant difference in the vertical height change in the buccal side between immediately after the augmentation procedure and the implant placement reentry time (p = 0.371). However, all implants functioned well regardless of the exposure during the observation period. Thus, vertical ridge augmentation around implants using titanium-reinforced MP-ePTFE membranes can be successful.


2017 ◽  
Vol 43 (5) ◽  
pp. 351-359 ◽  
Author(s):  
Panagiotis Dragonas ◽  
Charles Palin ◽  
Saba Khan ◽  
Praveen K. Gajendrareddy ◽  
Whitney D. Weiner

This case report aims to describe in detail a complication associated with resorption of regenerated bone following implant placement and ridge augmentation using recombinant human bone morphogenic protein–2 (rhBMP-2) in combination with allograft and xenograft. Bilateral maxillary sinus and ridge augmentation procedures were completed using rhBMP-2 combined with allograft and xenograft. Five months later, significant bone augmentation was achieved, which allowed for the placement of 4 implants. Upon stage 2 surgery, significant dehiscence was noted in all implants. Treatment steps to address this complication included implant removal, guided bone regeneration with xenograft only, and placement of new implants followed by soft-tissue grafting. At the time of publication, this patient is status 1½ years post case completion with maintenance of therapy outcomes. Off-label use of rhBMP-2 has gained significant acceptance in implant dentistry. However, there is limited evidence regarding the bone maturation process when rhBMP-2 is combined with other biomaterials. More research may be needed regarding the timing and process of bone healing in the presence of rhBMP-2, in an effort to avoid surgical complications.


2020 ◽  
Vol 8 (8) ◽  
pp. 501-507
Author(s):  
Deepika Gorantla ◽  
◽  
SVVS Musalaiah ◽  
Pavuluri Aravind Kumar ◽  
Narendra Babu M. ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document