scholarly journals FORMULATION DEVELOPMENT AND CHARACTERIZATION OF NADIFLOXACIN LOADED SOLID LIPID NANOPARTICLE BASED HYDROGEL

2021 ◽  
Vol 12 (4) ◽  
pp. 23-33
Author(s):  
Prashant Kumar ◽  
Sunil Khatak

The aim of this dissertation work was to develop and characterize an optimal formulation of solid lipid nanoparticles of nadifloxacin, which would then be incorporated into hydrogel. The SLN was developed with drug nadifloxacin, which is poorly water soluble. On the basis of solubility studies (i.e. partitioning effects), the lipid and components were chosen. In this study, the two variables amount of lipid and concentration of Poloxamer 188 were studied. The EE increased as the concentration of Poloxamer 188 increased. The particle size was observed to decrease as the concentration of Poloxamer 188 was increased. The EE increased in a similar way as the amount of lipid was increased. So the purpose was to formulate hydrogel with carbopol 940 with improved drug entrapment, sufficient viscosity, good extrudability, good homogeneity and improved drug release. Hydrogels are polymers that have swelling ability in water or aqueous solvent systems. Due to their increased water content, gels can provide a better feeling for skin than other conventional dosage forms. Hydrogels are insoluble in water. They are not easily removed from the application site.

2019 ◽  
Vol 16 (5) ◽  
pp. 1351-1365
Author(s):  
Muhammad Iqbal Nasiri ◽  
Rabia Ismail Yousuf ◽  
Muhammad Harris Shoaib ◽  
Kamran Zaheer ◽  
Tariq Ali ◽  
...  

2013 ◽  
Vol 3 (1) ◽  
pp. 2
Author(s):  
Rakesh P. Patel ◽  
Kaushal P. Patel ◽  
Kushal A. Modi ◽  
Chirayu J. Pathak

The objective of this study was to develop and manufacture a stable parenteral formulation for Aspirin, a non steroidal anti-inflammatory agent. The solubility and stability of the drug was determined. Solubility studies suggested that Aspirin exhibited poor aqueous solubility but showed appreciable solubility in non-aqueous solvents. Based on the preformulation studies, a lyophilized parenteral formulation containing 25 mg/mL of Aspirin was prepared in a solvent system containing of 80% v/v water and 20% v/v polyethylene glycol-400 (PEG-400). Rubber closures, filter membranes, and liquid transfer tubing were selected on the basis of compatibility studies. The formulation was subjected to accelerated stability studies. After reconstitution with sterile water for injection, Aspirin injection was stable for a period of 8 hr at 2°C to 8°C. Accelerated stability studies suggested that the lyophilized product should be kept at controlled room temperature for longterm storage. The proposed non-aqueous solvent concentration used, are known to safe hence, toxicities/safety related issues may not raise. The proposed techniques would be economical, convenient and safe. Thus, the study opens the chances of preparing lyophilized formulation of poorly-water soluble drugs.


Author(s):  
Rajeev Kumar ◽  
Sushant Kumar Shrivastava

The main aim of the present investigation is to study of formulation, development and characterization of floating mcrospheres of verapamil hydrochloride. Floating microspheres with a central hollow cavity were prepared by using a modified Quasi-emulsion diffusion technique. Weighed quantities of verapamil hydrochloride, ethyl cellulose, polyethylene oxide and hydroxy propylmethyl cellulose (HPMC K15M) were dissolved in a mixture of ethanol and dichloromethane (1:1 solvent ratio) at room temperature in a magnetic stirrer at 50 rpm for 50 min. The samples were assayed for drug content using UV spectrophotometer at 228 nm after suitable dilution. No interference was found due to the other components of floating microspheres at 228 nm. The yield was determined by weighing the microspheres and then the percentage yield was calculated with respect to the weight of the input materials, i.e., weight of verapamil and polymers used. The polymers like ethyl cellulose, eudragit L 100, polyethylene oxide and HPMC were selected for hollow microspheres preparation. These formulations contained ethyl cellulose (2%) and Polyethylene oxide (1%), HPMC K15M (1%) & eudragit L100 (1%) respectively. The encapsulation efficiency ranged between 53 ± 2.2 to 89 ± 1.9%, and was observed that the encapsulation efficiency increased with increasing amount of polymers in the hollow microspheres. The sphericity factors for all formulations were in the range of 1.01 ± 0.2 to 1.29  ±  0.6  and  the  sphericity  values  of  best  formulations  F3,  F7  and  F9  were 1.05±0.2, 1.07 ± 0.1 and 1.16 ± 0.1 respectively. Quassi emulsion method used for preparation of hollow microspheres was suitable for poor water soluble drugs, because the drug was soluble in the internal organic phase.


Author(s):  
ARIF BUDIMAN

Solubility of the drug has a strong influence to achieve higher bioavailability of the drug in systemic circulation. More than 70% NCEs (new chemical entities) are hydrophobic, and practically difficult into solid formulation due to their poor water solubility. Mesoporous silicas (MSP) have been used for drug delivery system, especially for poorly water-soluble drugs. Encapsulation and interaction of drugs in MSP can enhance the delivery and maintain the stability of the drug. However, the characterization of the drug in MSP is necessary to confirm its molecular state. In this review, we present an overview of reports related to the characterization of drug encapsulated into MSP. Encapsulation of drugs in MSP can prevent recrystallization of drugs due to its inhibition of crystal nucleation. A porous material in MSP can maintain the drug in a physically stable amorphous state. The preventing of drug crystallization in MSP can enhance the solubility and the dissolution rate of drug. Therefore, in this work, attempts have been made to understand the molecular state of the drug in MSP. The physicochemical characterization of drug by transmission electron microscopy (TEM), scanning electron microscope (SEM), differential scanning calorimetry (DSC), fourier-transform infrared spectroscopy (FTIR), powder x-ray diffraction (PXRD) and thermogravimetric analysis (TGA) were discussed. The effect of solvent and methods of drug loading and the effect of the shape of MSP on release profiles are also presented. Overall, this review provides information about the characterization of drug encapsulated into MSP which will be useful in pharmaceutical formulation development.


2017 ◽  
Vol 1 (1) ◽  
pp. 26
Author(s):  
T. Neelima Rani

<em>The aim of the present study was to formulate and evaluate oral thin films of zolpidem tartarate. Zolpidem tartarateis used to treat insomnia. It affects chemicals in your brain that may become unbalanced and cause sleep problems (insomnia). Zolpidem tartarate oral thin films were prepared by using solvent casting method. In this method, water soluble polymer is completely dissolved in to form uniform clear viscous solution other ingredients including API are dissolved in a small portion of aqueous solvent by using a high shear processor. This viscous solution is degassed under the vacuum to remove the air bubbles. This bubble free solution is poured into a glass mold and kept in oven at 40 º-50ºC. Oral disintegrating films are prepared using three grades of polymers HPMC E5, GUAR GUM and SODIUM ALGINATE Compatibility of Zolpidem tartarate with polymers was confirmed by FT-IR studies. All the formulations were evaluated for their physical appearance, average weight and thickness, folding endurance, disintegration time, tensile strength, percentage elongation, drug content, content uniformity and in vitro drug dissolution studies. From the result, it was concluded that the fast dissolving films of Zolpidem tartarate can be made by solvent casting technique with enhanced dissolution rate and taste masking by using suitable combination of sweeteners, flavors and citric acid. The final composition optimized was drug to Guar Gum ratio of 1:1, plasticizer concentration of 15% w/w of polymer. The film had acceptable physical properties, assay and uniformity values and in vitro dissolution within 2 minutes.</em>


Author(s):  
B. J. Grenon ◽  
A. J. Tousimis

Ever since the introduction of glutaraldehyde as a fixative in electron microscopy of biological specimens, the identification of impurities and consequently their effects on biologic ultrastructure have been under investigation. Several reports postulate that the impurities of glutaraldehyde, used as a fixative, are glutaric acid, glutaraldehyde polymer, acrolein and glutaraldoxime.Analysis of commercially available biological or technical grade glutaraldehyde revealed two major impurity components, none of which has been reported. The first compound is a colorless, water-soluble liquid with a boiling point of 42°C at 16 mm. Utilizing Nuclear Magnetic Resonance (NMR) spectroscopic analysis, this compound has been identified to be — dihydro-2-ethoxy 2H-pyran. This impurity component of the glutaraldehyde biological or technical grades has an UV absorption peak at 235nm. The second compound is a white amorphous solid which is insoluble in water and has a melting point of 80-82°C. Initial chemical analysis indicates that this compound is an aldol condensation product(s) of glutaraldehyde.


Sign in / Sign up

Export Citation Format

Share Document