scholarly journals FORMULATE AND EVALUATE THE ORAL DISPERSIBLE TABLET OF ANTIDIABETIC DRUG TENELIGLIPTIN

2021 ◽  
Vol 12 (10) ◽  
pp. 7-12
Author(s):  
Arpana Maurya ◽  
Dilip kumar Gupta ◽  
Munendra Mohan Varshaney

Orodispersible tablets (ODTs) are novel drug delivery systems that have the potential to significantly affect conventional dosage forms in terms of patient compliance, convenience, bioavailability, and time to action. Despite the fact that significant research has gone into developing ODT formulations and technologies, in order to produce newer, more expense technologies and better items, more research is needed in these major destinations. Because of the availability of new technologies, as well as good market acceptance and patient compliance, the potential of dosage forms is attractive. Pharmaceutical companies can use ODTs for new product lines or first-to-market products, which is a factor in technology. With the continuing development of new pharmaceutical excipients, more unique ODT technologies are likely to occur soon. Method -For the orodispersible tablet optimized formulation, a direct compression method was used. Result: The pure dosage calibration curve was created by dissolving the medication in ethanol and measuring the absorbance with a UV spectrophotometer set at 243.5 nm. The value of the slope was 1.025. Light microscopy was used to predict the size of teneligliptin particles. The average length and breadth of drug particles were 2.10 µm and 1.14µm. In-vitro drug release study profile of formulation demonstrated around 71 % of the drug diffused in 60 min., while the formulation 85 % of the rug release in 60 min.

Author(s):  
Sagar T. Malsane ◽  
Smita S. Aher ◽  
R. B. Saudagar

Oral route is presently the gold standard in the pharmaceutical industry where it is regarded as the safest, most economical and most convenient method of drug delivery resulting in highest patient compliance. Over the past three decades, orally disintegrating tablets (FDTs) have gained considerable attention due to patient compliance. Usually, elderly people experience difficulty in swallowing the conventional dosage forms like tablets, capsules, solutions and suspensions because of tremors of extremities and dysphagia. In some cases such as motion sickness, sudden episodes of allergic attack or coughing, and an unavailability of water, swallowing conventional tablets may be difficult. One such problem can be solved in the novel drug delivery system by formulating “Fast dissolving tablets” (FDTs) which disintegrates or dissolves rapidly without water within few seconds in the mouth due to the action of superdisintegrant or maximizing pore structure in the formulation. The review describes the various formulation aspects, superdisintegrants employed and technologies developed for FDTs, along with various excipients, evaluation tests, marketed formulation and drugs used in this research area.


2020 ◽  
Vol 14 (2) ◽  
pp. 88-97 ◽  
Author(s):  
Suresh Gupta ◽  
Tegginamath Pramod Kumar ◽  
Devegowda Vishakante Gowda

: The traditional oral dosage forms (tablets, capsules, syrups, and elixirs) suffer from various disadvantages. They are pretty challenging to administer to patients with dysphagia, mucositis, and vomiting tendency. Therefore, gaining patient compliance using conventional dosage forms is highly cumbersome. One of the most transformative and innovative approaches to overcome such challenges is Orodispersible Films, a Novel Drug Delivery System. They are easy to consume, no need to chew or swallow and they do not even require water for consumption. Therefore, several drugs have been converted into orodispersible films to gain patient compliance. With the advent of these film formulations, new innovations are erupting and accordingly, companies in India are actively protecting them by filing ordinary patent applications in India and internationally under the Patent Cooperation Treaty. Patenting in India poses unique patentability challenges when compared with rest of the world. Nonetheless, meeting all the challenges and obtaining a valid patent not only help in recouping the cost involved in developing new drugs and its novel drug delivery systems but also helps in taking legal action against alleged infringers. This review article identifies key active Indian players in the domain of ODF based on their patent filings in India (and abroad) and also identifies the challenges they face to obtain a grant.


2011 ◽  
Vol 57 (2) ◽  
pp. 232-240 ◽  
Author(s):  
A.P. Bonartsev ◽  
G.M. Soboleva ◽  
K.V. Shaytan ◽  
M.P. Kirpichnikov ◽  
S.G. Yakovlev ◽  
...  

Development of systems of medicines with sustained action on the basis of biodegradable polymers is a promising trend in modern pharmacology. Polyhydroxyalkanoates (POA) attract increasing attention due to their biodegradability and high biocompatibility, which make them suitable for development of novel drug dosage forms. We obtained microspheres on the basis of poly(3-hydroxybutyrate) (PHB) loaded with the antitumor drug paclitaxel. Morphology, drug release kinetics and effect on tumor cells in vitro of microspheres were studied. The data on the kinetics of drug release, biocompatibility and biological activity of the biopolymer microspheres in vitro showed that the studied system of prolonged drug release had lower toxicity and higher efficiency compared to the traditional dosage forms of paclitaxel.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 87-93
Author(s):  
AS Bansode ◽  
K Sarvanan

Novel drug delivery systems (NDDS) are the key area of pharmaceutical research and Development. The reason is relatively low development cost and time required for introducing a NDDS as compared to new chemical entity. Many conventional drug delivery systems have been designed to modulate the release a drug over an extended period of a time. Various designs are available to control or modulate the drug release from a dosage forms. Majority of oral CR dosage forms fall in the category of matrix, reservoir or osmotic systems. Osmotically controlled drug delivery systems (OCDDS) is one of the most promising drug delivery technology that use osmotic pressure as a driving force for controlled delivery of active agents. Drug release from OCDDS is independent of pH and hydrodynamic conditions of the body because of the semipermeable nature of the Rate controlling membrane and the design of deliver orifice used in osmotic systems, so a high degree of In vitro/In vivo correlation is achieved. Osmotic drug delivery systems release the drug with the zero order kinetics which does not depend on the initial concentration and the physiological factors of GIT. This review brings out new technologies, fabrication and recent clinical research in osmotic drug delivery. Keywords: Osmotic, Matrix, Reservoir, Fabrication


Author(s):  
Jamal Basha D ◽  
Kumar P R ◽  
Ranganayakulu D

An oleo gum resin guggulu is a product which obtained as a result of gummosis from the bark of Commiphora wightii (Arnott) Bhandari [syn. Commiphoramukul (Hook. Ex Stocks) Family, Burseraceae]. It has been known for its immense applicability in the Ayurveda since time immemorial for the treatment of variety of disorders such as inflammation, gout, rheumatism, impotence, leprosy, obesity, and disorders of lipids metabolism. It is a mixture of phytoconstituents like terpenoids, steroids, flavonoids, guggultetrols, lignans, sugars, and amino acids. This review is an effort to compile all the information available on all of its chemical constituents which are responsible for its therapeutic potential, limitation of guggul extracts and the necessity of novel principles for gum guggul. Nowadays, Guggul is available as the marketed formulation for curing numerous clinical conditions and is accessible in combination with various other ingredients. Though conventional dosage form shows the dominance as patient compliance and easy availability, yet it has found to pose the problems like dose fluctuation, peak-valley effect, non-adjustment of the administered drug, invasiveness etc. Guggul lacks its desired effect due to its low bioavailability and water solubility. This makes it a partial or a deficient therapy for remedy of many signs and symptoms. Novel drug delivery system (NDDS), a new approach and has excluded many of drawbacks exhibited by conventional dosage forms. Some of the novel dosage forms of guggul has been formed like nanoparticles, nanovesicles, gugglusomes and proniosomal gel. But still, the novel formulations for guggul has its less outspread in the market. Guggul can be executed as a profitable drug using NDDS. There is a need to highlight the unidentified and unexplained facts about guggul so as to make it more efficacious and effective in terms of bioavailability and aqueous insolubility.


Author(s):  
R. Nagaraju ◽  
Rajesh Kaza

Salbutamol and theophylline are available in conventional dosage forms, administered four times a day, leading to saw tooth kinetics and resulting in ineffective therapy. The combination of these two drugs in a single dosage form will enhance the patient compliance and prolong bronchodilation. Various polymers, such as hydroxy propyl methylcellulose K4M (HPMC- K4M), hydroxy propyl methylcellulose K100M (HPMC- K100M), xanthan gum, ethyl cellulose and hydroxy propyl methylcellulose phthalate (HPMC-P) were studied. HPMC-P and HPMC- K4M were found to be best in controlling the release. In-vitro dissolution studies were carried out for all the bi-layered tablets developed using USP dissolution apparatus type 2 (paddle). It was found that the tablet FB15-FW3 showed 50% release of salbutamol in first hour and the remaining was released for eight hours. However, theophylline was found to be released as per the USP specifications. The IR spectrum was taken for FB15-FW3 formulation and it revealed that there is no disturbance in the principal peaks of pure drugs salbutamol and theophylline. This further confirms the integrity of pure drugs and no incompatibility of them with excipients. Also, formulation of FB15-FW3 has shown required release pattern and complies with all the evaluated parameters and comparable to the marketed formulation.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document