scholarly journals REVIEW OF DESIGN APPROACHES AND CLINICAL PROGRESS OF MDM2 INHIBITORS

2021 ◽  
Vol 12 (11) ◽  
pp. 1-7
Author(s):  
Chiragkumar J. Gohil ◽  
Malleshappa N. Noolvi ◽  
Chhaganbhai N. Patel ◽  
Dhrubo Jyoti Sen

Activation of the oncogenes and inhibition of the apoptotic function of the p53 protein is a gateway for the cancer genesis. Interaction of the MDM2 protein with p53 protein is responsible for the inhibition of the p53 function. Inhibiting the p53-MDM2 interaction by drug will lead to the p53 release in the cancer cells. And can restart the apoptosis in the cancer cell. Computational methods successfully used for the design and development of the new, potent MDM2 inhibitors. Researchers and pharma companies used rational approach like target-based drug design or ligand-based drug design to develop the novel MDM2 inhibitors. The number of MDM2 inhibitors, has been designed by the computer-aided drug design and in-silico studies. In clinical studies, MDM2 inhibitors are led by RG7112. RG7112 completed its phase-1 trials in 2016, and recently it is under phase-2 trials. Along with RG7112, the number of potent MDM2 inhibitors entered the clinical trials successfully. It indicates the successful development of this class (MDM2 inhibitors). MDM2 inhibitors were found very effective in various studies for the treatment of various kinds of cancers. They have good selectivity for the tumor cells over the normal cells. It induced the dose dependent cell cycle arrest only; in the normal cells. In studies, MDM2 inhibitors successfully detached the p53 protein from the MDM2 protein. And restart the cell-killing function of the p53 protein in the cancer cells. Hence, MDM2 inhibitors can selectively kill the cancer cells over the normal cells.

Author(s):  
Zhixian Shi ◽  
Li Chen ◽  
Jianbo Sun

Background: Natural products and their molecular frameworks have been explored as invaluable sources of inspiration for drug design by means of structural modification, computer aided drug design, and so on. Scopoletin extracting from multiple herbs exhibits potential anticancer activity in vitro and vivo without toxicity towards normal cells. Objective: To obtain new scopoletin derivatives with enhanced anticancer activity, we performed the chemical structure modification and researched the mechanism of anti-tumor activity. Methods: In this study, we take regard scopoletin as lead compound, designed and synthesized a series of scopoletin derivatives via introducing different heterocyclic fragments, and their chemical structures were characterized by NMR spectra (1H NMR and 13C NMR) and HRMS(ESI). The antiproliferative activity of target compounds in four cancer cell lines (MDA-MB-231, MCF-7, HepG2, and A549) were determined by the MTT assay. Compound 11b was treated with Ac-cys under different reaction condition to explore the thiol addition activity of it. The Annexin V/PI and JC-1 staining assay were performed to investigate the anti-tumor mechanism of 11b. Results: Novel compounds 8a-h and 11a-h derivatives of scopoletin were synthesized. Most of target compounds exhibited enhanced antiproliferative activity against different cancer cells and reduced toxicity towards normal cells. In particular, 11b displayed the optimal antitumor ability against breast cancer MDA-MB-231 cells with an IC50 value of 4.46 μM. 11b also cannot react with Ac-cys under the experimental condition. When treated with 11b for 24 h, the total apoptotic cells increased from 10.8% to 79.3%. Besides, 11b induced the depolarization of mitochondrial membrane potential. Conclusion: 11b was more active than other derivatives, indicating that the introduction of thiophene fragment was beneficial for the enhancement of antitumor effect, and it was also not an irreversible inhibitor basing on the result that the α, β-unsaturated ketones of 11b cannot undergo Michael addition reactions with Ac-cys. Furthermore, studies on the pharmacological mechanism showed that 11b induced the mitochondrial depolarization and apoptosis, which indicated 11b killed cancer cells via mitochondrial apoptotic pathway. Therefore, an in-depth research and structure optimization of this compound is warranted.


2020 ◽  
Vol 15 (2) ◽  
pp. 154-164 ◽  
Author(s):  
Ijaz Muhammad ◽  
Noor Rahman ◽  
Gul E. Nayab ◽  
Sadaf Niaz ◽  
Mohibullah Shah ◽  
...  

Background: Cancer is characterized by overexpression of p53 associated proteins, which down-regulate P53 signaling pathway. In cancer therapy, p53 activity can be restored by inhibiting the interaction of MDMX (2N0W) and MDM2 (4JGR) proteins with P53 protein. Objective: In the current, study in silico approaches were adapted to use a natural product as a source of cancer therapy. Methods: In the current study in silico approaches were adapted to use a natural product as a source of cancer therapy. For in silico studies, Chemdraw and Molecular Operating Environment were used for structure drawing and molecular docking, respectively. Flavonoids isolated from D. carota were docked with cancerous proteins. Result: Based on the docking score analysis, we found that compound 7 was the potent inhibitor of both cancerous proteins and can be used as a potent molecule for inhibition of 2N0W and 4JGR interaction with p53. Conclusion: Thus the compound 7 can be used for the revival of p53 signaling pathway function however, intensive in vitro and in vivo experiments are required to prove the in silico analysis.


2019 ◽  
Vol 18 (15) ◽  
pp. 2156-2168 ◽  
Author(s):  
Magda F. Mohamed ◽  
Nada S. Ibrahim ◽  
Ahmed H.M. Elwahy ◽  
Ismail A. Abdelhamid

Background: Cancer is a complex genetic disease which is characterized by an abnormal cell growth, invasion and spreading to other parts of the body. There are several factors that lead to cancer by causing DNA damage and the impairment of its repair. Treatment of cancer using the chemotherapeutic drugs have adverse side effects such as toxicity as they lose their specificity toward cancer cells and affect also normal cells. Moreover, the cancer cells can resist the chemotherapeutic agents and make them ineffective. For these reasons, much attentions have been paid to develop new drugs with limited side effects on normal cells and to diminish cancer resistance to drug chemotherapy. Recently, some 1,4-dihydropyridine derivatives were reported to act as Multi-Drug Resistance (MDR) modulators that inhibit p-glycoprotein which is responsible for the inability of drugs to enter the cancer cells. Also 1,4-DHPs have antimutagenic properties against chemicals via modulating DNA repair when studied on drosophila. Objective: The objective of this study is the synthesis of bis 1,4-DHPs incorporating ester as well as ether linkages and evaluate the anticancer activity of new compounds for synergistic purpose. Different genetic tools were used in an attempt to know the mechanism of action of this compound against lung cancer. Method: An efficient one pot synthesis of bis 1,4-DHPs using 3-aminocrotononitrile and bis(aldehydes) has been developed. The cytotoxic effect against human cell lines MCF7, and A549 cell lines was evaluated. Results: All compounds exhibited better cytotoxicity toward lung carcinoma cells than breast cancer cells. With respect to lung carcinoma cell line (A549), compound 10 was the most active compound and the three other compounds 7, 8, and 9 showed comparable IC50 values. In case of breast cancer cell line (MCF7), the most active one was compound 7, while compound 8 recorded the least activity. Conclusion: we have developed an efficient method for the synthesis of novel bis 1,4-dihydropyridine derivatives incorporating ester or ether linkage. All compounds showed better cytotoxicity results against A549 than MCF7, so that lung carcinoma cell line was chosen to perform the molecular studies on it. The results showed that all compounds (7, 8, 9 and 10) caused cell cycle arrest at G1 phase. The molecular docking study on CDK2 confirmed the results of cell cycle assay which showed good binding energy between the compounds and the active site of enzyme indicating the inhibition of the enzyme.


2019 ◽  
Vol 19 (7) ◽  
pp. 916-934 ◽  
Author(s):  
Appavoo Umamaheswari ◽  
Ayarivan Puratchikody ◽  
Natarajan Hari

Background:The available treatment option for any type of cancer including CTCL is chemotherapy and radiation therapy which indiscriminately persuade on the normal cells. One way out for selective destruction of CTCL cells without damaging normal cells is the use of histone deacetylase inhibitors (HDACi). Despite promising results in the treatment of CTCL, these HDACi have shown a broadband inhibition profile, moderately selective for one HDAC class but not for a particular isotype. The prevalence of drug-induced side effects leaves open a narrow window of speculation that the decreased therapeutic efficacy and observed side effects may be most likely due to non specific HDAC isoform inhibition. The aim of this paper is to synthesis and evaluates HDAC8 isoform specific inhibitors.Methods:Based on the preliminary report on the design and in silico studies of 52 hydroxamic acid derivatives bearing multi-substituent heteroaromatic rings with chiral amine linker, five compounds were shortlisted and synthesized by microwave assisted approach and high yielding synthetic protocol. A series of in vitro assays in addition to HDAC8 inhibitory activity was used to evaluate the synthesised compounds.Results:Inhibitors 1e, 2e, 3e, 4e and 5e exerted the anti-proliferative activities against CTCL cell lines at 20- 100 µM concentrations. Both the pyrimidine- and pyridine-based probes exhibited μM inhibitory activity against HDAC8. The pyrimidine-based probe 1e displayed remarkable HDAC8 selectivity superior to that of the standard drug, SAHA with an IC50 at 0.1µM.Conclusion:Our study demonstrated that simple modifications at different portions of pharmacophore in the hydroxamic acid analogues are effective for improving both HDAC8 inhibitory activity and isoform selectivity. Potent and highly isoform-selective HDAC8 inhibitors were identified. These findings would be expedient for further development of HDAC8-selective inhibitors.


2018 ◽  
Vol 18 (3) ◽  
pp. 412-421 ◽  
Author(s):  
Madhumitha Kedhari Sundaram ◽  
Mohammad Zeeshan Ansari ◽  
Abdullah Al Mutery ◽  
Maryam Ashraf ◽  
Reem Nasab ◽  
...  

Introduction: Epidemiological studies indicate that diet rich in fruits and vegetables is associated with decreased cancer risk thereby indicating that dietary polyphenols can be potential chemo-preventive agents. The reversible nature of epigenetic modifications makes them a favorable target for cancer prevention. Polyphenols have been shown to reverse aberrant epigenetic patterns by targeting the regulatory enzymes, DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). In vitro and in silico studies of DNMTs and HDACs were planned to examine genistein’s role as a natural epigenetic modifier in human cervical cancer cells, HeLa. Methods: Expression of the tumour suppressor genes (TSGs) [MGMT, RARβ, p21, E-cadherin, DAPK1] as well the methylation status of their promoters were examined alongwith the activity levels of DNMT and HDAC enzymes after treatment with genistein. Expression of DNMTs and HDACs was also studied. In-silico studies were performed to determine the interaction of genistein with DNMTs and HDACs. Results: Genistein treatment significantly reduced the expression and enzymatic activity of both DNMTs and HDACs in a time-dependent way. Molecular modeling data suggest that genistein can interact with various members of DNMT and HDAC families and support genistein mediated inhibition of their activity. Timedependent exposure of genistein reversed the promoter region methylation of the TSGs and re-established their expression. Conclusions: In this study, we find that genistein is able to reinstate the expression of the TSGs studied by inhibiting the action of DNMTs and HDACs. This shows that genistein could be an important arsenal in the development of epigenetic based cancer therapy.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yu-An Chen ◽  
Yong-Da Sie ◽  
Tsung-Yun Liu ◽  
Hsiang-Ling Kuo ◽  
Pei-Yi Chou ◽  
...  

AbstractMetastatic cancer cells are frequently deficient in WWOX protein or express dysfunctional WWOX (designated WWOXd). Here, we determined that functional WWOX-expressing (WWOXf) cells migrate collectively and expel the individually migrating WWOXd cells. For return, WWOXd cells induces apoptosis of WWOXf cells from a remote distance. Survival of WWOXd from the cell-to-cell encounter is due to activation of the survival IκBα/ERK/WWOX signaling. Mechanistically, cell surface epitope WWOX286-299 (repl) in WWOXf repels the invading WWOXd to undergo retrograde migration. However, when epitope WWOX7-21 (gre) is exposed, WWOXf greets WWOXd to migrate forward for merge. WWOX binds membrane type II TGFβ receptor (TβRII), and TβRII IgG-pretreated WWOXf greet WWOXd to migrate forward and merge with each other. In contrast, TβRII IgG-pretreated WWOXd loses recognition by WWOXf, and WWOXf mediates apoptosis of WWOXd. The observatons suggest that normal cells can be activated to attack metastatic cancer cells. WWOXd cells are less efficient in generating Ca2+ influx and undergo non-apoptotic explosion in response to UV irradiation in room temperature. WWOXf cells exhibit bubbling cell death and Ca2+ influx effectively caused by UV or apoptotic stress. Together, membrane WWOX/TβRII complex is needed for cell-to-cell recognition, maintaining the efficacy of Ca2+ influx, and control of cell invasiveness.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 462 ◽  
Author(s):  
Joanna Pilch ◽  
Patrycja Kowalik ◽  
Piotr Bujak ◽  
Anna M. Nowicka ◽  
Ewa Augustin

Nanotechnology-based drug delivery provides a promising area for improving the efficacy of cancer treatments. Therefore, we investigate the potential of using quantum dots (QDs) as drug carriers for antitumor unsymmetrical bisacridine derivatives (UAs) to cancer cells. We examine the influence of QD–UA hybrids on the cellular uptake, internalization (Confocal Laser Scanning Microscope), and the biological response (flow cytometry and light microscopy) in lung H460 and colon HCT116 cancer cells. We show the time-dependent cellular uptake of QD–UA hybrids, which were more efficiently retained inside the cells compared to UAs alone, especially in H460 cells, which could be due to multiple endocytosis pathways. In contrast, in HCT116 cells, the hybrids were taken up only by one endocytosis mechanism. Both UAs and their hybrids induced apoptosis in H460 and HCT116 cells (to a greater extent in H460). Cells which did not die underwent senescence more efficiently following QDs–UAs treatment, compared to UAs alone. Cellular senescence was not observed in HCT116 cells following treatment with both UAs and their hybrids. Importantly, QDgreen/red themselves did not provoke toxic responses in cancer or normal cells. In conclusion, QDs are good candidates for targeted UA delivery carriers to cancer cells while protecting normal cells from toxic drug activities.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3737
Author(s):  
Joana Moreira ◽  
Joana Almeida ◽  
Lucília Saraiva ◽  
Honorina Cidade ◽  
Madalena Pinto

The p53 protein is one of the most important tumor suppressors that are frequently inactivated in cancer cells. This inactivation occurs either because the TP53 gene is mutated or deleted, or due to the p53 protein inhibition by endogenous negative regulators, particularly murine double minute (MDM)2. Therefore, the reestablishment of p53 activity has received great attention concerning the discovery of new cancer therapeutics. Chalcones are naturally occurring compounds widely described as potential antitumor agents through several mechanisms, including those involving the p53 pathway. The inhibitory effect of these compounds in the interaction between p53 and MDM2 has also been recognized, with this effect associated with binding to a subsite of the p53 binding cleft of MDM2. In this work, a literature review of natural and synthetic chalcones and their analogues potentially interfering with p53 pathway is presented. Moreover, in silico studies of drug-likeness of chalcones recognized as p53–MDM2 interaction inhibitors were accomplished considering molecular descriptors, biophysiochemical properties, and pharmacokinetic parameters in comparison with those from p53–MDM2 in clinical trials. With this review, we expect to guide the design of new and more effective chalcones targeting the p53 pathway.


2021 ◽  
Vol 22 (12) ◽  
pp. 6519
Author(s):  
Yuta Otani ◽  
Ken-ichi Fujita ◽  
Toshiki Kameyama ◽  
Akila Mayeda

Using TSG101 pre-mRNA, we previously discovered cancer-specific re-splicing of mature mRNA that generates aberrant transcripts/proteins. The fact that mRNA is aberrantly re-spliced in various cancer cells implies there must be an important mechanism to prevent deleterious re-splicing on the spliced mRNA in normal cells. We thus postulated that mRNA re-splicing is controlled by specific repressors, and we searched for repressor candidates by siRNA-based screening for mRNA re-splicing activity. We found that knock-down of EIF4A3, which is a core component of the exon junction complex (EJC), significantly promoted mRNA re-splicing. Remarkably, we could recapitulate cancer-specific mRNA re-splicing in normal cells by knock-down of any of the core EJC proteins, EIF4A3, MAGOH, or RBM8A (Y14), implicating the EJC core as the repressor of mRNA re-splicing often observed in cancer cells. We propose that the EJC core is a critical mRNA quality control factor to prevent over-splicing of mature mRNA.


Sign in / Sign up

Export Citation Format

Share Document