scholarly journals Screening of Lentil Genotypes against Highly Aggressive Strain of Fusarium oxysporum f. sp. lentis

Author(s):  
Naila Tarannum ◽  
Anil Kumar ◽  
Ravi Ranjan Kumar ◽  
Anand Kumar ◽  
J. N. Srivastva ◽  
...  

Lentil is one of the most nutritious pulse crops known as masur and grown as a rainfed crop throughout the world in winter season. It is rich in protein, starch, micronutrients and dietary fiber. In the global scenario, India ranked first in the area and second in the production with Bihar being one the major lentil growing state. The majority of the lentil crop is grown in Tal area of the state. As it is cultivated as a rainfed crop, it gets severely affected by several biotic and abiotic stresses. Among the biotic stresses, Fusaium wilt, caused by Fusarium oxysporum f. sp. lentis (Fol) is one of the major fungal diseases and remarkably causing severe crop damage from vegetative to reproductive stage producing significant yield reduction. Fol isolate exhibit great variability and aggressiveness based on agro- climatic conditions. AGLF-11 isolate of Fol collected from Tal area of Bihar was found to be highly aggressive based on previous studies. For this, 50 diverse genotypes were screened against this isolate under greenhouse condition, out of which 14 genotypes showed high susceptibility, 29 genotypes showed moderate susceptibility, 5 genotypes exhibited moderately resistance and only 2 genotypes (L 7920 and DPL 58) exhibited resistance reaction.

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1004
Author(s):  
John Lobulu ◽  
Hussein Shimelis ◽  
Mark D. Laing ◽  
Arnold Angelo Mushongi ◽  
Admire Isaac Tichafa Shayanowako

Striga species cause significant yield loss in maize varying from 20 to 100%. The aim of the present study was to screen and identify maize genotypes with partial resistance to S. hermonthica (Sh) and S. asiatica (Sa) and compatible with Fusarium oxysporum f. sp. strigae (FOS), a biocontrol agent. Fifty-six maize genotypes were evaluated for resistance to Sh and Sa, and FOS compatibility. Results showed that FOS treatment significantly (p < 0.001) enhanced Striga management compared to the untreated control under both Sh and Sa infestations. The mean grain yield was reduced by 19.13% in FOS-untreated genotypes compared with a loss of 13.94% in the same genotypes treated with FOS under Sh infestation. Likewise, under Sa infestation, FOS-treated genotypes had a mean grain yield reduction of 18% while untreated genotypes had a mean loss of 21.4% compared to the control treatment. Overall, based on Striga emergence count, Striga host damage rating, grain yield and FOS compatibility, under Sh and Sa infestations, 23 maize genotypes carrying farmer preferred traits were identified. The genotypes are useful genetic materials in the development of Striga-resistant cultivars in Tanzania and related agro-ecologies.


2018 ◽  
Vol 38 (01) ◽  
Author(s):  
O. P. Gangwar ◽  
Akanksha P.K. Singh

Several environmental stresses are the major hindrances in achieving the attainable yield in wheat crop. The actual losses due to biotic stresses is estimated in the range of 26-29%, however, abiotic stresses have more adverse effects on crop yield and are responsible for about 70% of yield reduction worldwide. Agrochemicals are widely considered as an effective management strategy for wheat crop diseases and insect pests but they adversely affect the human and animal health due to accumulation of chemical residues in the soil, plant tissues and grains. Hence, there is a need for alternate management strategies to protect crop plants against various stresses. Species of the genus Trichoderma are economically important as biocontrol agents, serving as a potential alternative to agrochemicals for overcoming the biotic and abiotic stresses. The importance of Trichoderma in alleviating the myriad of biotic and abiotic stresses of wheat is discussed in this review article.


Agriculture ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 70 ◽  
Author(s):  
Ralph Hale ◽  
Taghi Bararpour ◽  
Gurpreet Kaur ◽  
John Seale ◽  
Bhupinder Singh ◽  
...  

A field experiment was conducted in 2017 and 2018 to evaluate the sensitivity and recovery of grain sorghum to the simulated drift of glufosinate, glyphosate, and paraquat at two application timings (V6 and flag leaf growth stage). Paraquat drift caused maximum injury to sorghum plants in both years, whereas the lowest injury was caused by glyphosate in 2017. Averaged over all herbicide treatments, injury to grain sorghum from the simulated herbicide drift was 5% greater when herbicides were applied at flag leaf stage, as compared to herbicide applications at the six-leaf stage in 2017. In 2018, injury from glyphosate drift was higher when applied at the six-leaf stage than at the flag leaf stage. Paraquat and glufosinate drift caused more injury when applied at flag leaf stage than at six-leaf stage at 14 days after application in 2018. About 21% to 29% of injury from the simulated drift of paraquat led to a 31% reduction in grain sorghum yield, as compared to a nontreated check in 2017. The simulated drift of glyphosate and glufosinate did not result in any significant yield reduction compared to the nontreated check in 2017, possibly due to the recovery of sorghum plants after herbicides’ drift application.


2021 ◽  
Vol 10 (1) ◽  
pp. 456-475
Author(s):  
Efat Zohra ◽  
Muhammad Ikram ◽  
Ahmad A. Omar ◽  
Mujahid Hussain ◽  
Seema Hassan Satti ◽  
...  

Abstract In the present era, due to the increasing incidence of environmental stresses worldwide, the developmental growth and production of agriculture crops may be restrained. Selenium nanoparticles (SeNPs) have precedence over other nanoparticles because of the significant role of selenium in activating the defense system of plants. In addition to beneficial microorganisms, the use of biogenic SeNPs is known as an environmentally friendly and ecologically biocompatible approach to enhance crop production by alleviating biotic and abiotic stresses. This review provides the latest development in the green synthesis of SeNPs by using the results of plant secondary metabolites in the biogenesis of nanoparticles of different shapes and sizes with unique morphologies. Unfortunately, green synthesized SeNPs failed to achieve significant attention in the agriculture sector. However, research studies were performed to explore the application potential of plant-based SeNPs in alleviating drought, salinity, heavy metal, heat stresses, and bacterial and fungal diseases in plants. This review also explains the mechanistic actions that the biogenic SeNPs acquire to alleviate biotic and abiotic stresses in plants. In this review article, the future research that needs to use plant-mediated SeNPs under the conditions of abiotic and biotic stresses are also highlighted.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Arkadiusz M. Tomczyk ◽  
Ewa Bednorz ◽  
Katarzyna Szyga-Pluta

The primary objective of the paper was to characterize the climatic conditions in the winter season in Poland in the years 1966/67–2019/20. The study was based on daily values of minimum (Tmin) and maximum air temperature (Tmax), and daily values of snow cover depth. The study showed an increase in both Tmin and Tmax in winter. The most intensive changes were recorded in north-eastern and northern regions. The coldest winters were recorded in the first half of the analyzed multiannual period, exceptionally cold being winters 1969/70 and 1984/85. The warmest winters occurred in the second half of the analyzed period and among seasons with the highest mean Tmax, particularly winters 2019/20 and 1989/90 stood out. In the study period, a decrease in snow cover depth statistically significant in the majority of stations in Poland was determined, as well as its variability both within the winter season and multiannual.


2016 ◽  
Vol 34 (2) ◽  
pp. 135-149 ◽  
Author(s):  
Chiemi Iba ◽  
Ayumi Ueda ◽  
Shuichi Hokoi

Purpose – Frost damage is well-known as the main cause of roof tile deterioration. The purpose of this paper is to develop an analytical model for predicting the deterioration process under certain climatic conditions. This paper describes the results of a field survey conducted to acquire fundamental information useful to this aim. Design/methodology/approach – A field survey of roof tile damage by freezing was conducted in an old temple precinct in Kyoto, Japan. Using detailed observations and photographic recordings, the damage progress was clarified. To examine the impact of climatic conditions upon the damage characteristics, weather data and roof tile temperatures were measured and logged in the winter season. Findings – The deterioration process was observed under the climatic conditions associated with the measured temperature of the roof tiles. In particular, it was revealed that the orientation has a significant influence on increasing or decreasing the risk of frost damage. For certain distinctive forms of damage, the deterioration mechanisms were estimated from the viewpoint of the moisture flow and temperature distribution in the tile. Originality/value – This study contributes to the elucidation of the mechanism behind frost damage to roof tiles. The findings will guide the construction of a numerical model for frost damage prediction.


Plant Disease ◽  
2005 ◽  
Vol 89 (7) ◽  
pp. 726-733 ◽  
Author(s):  
O. Carisse ◽  
H. A. McCartney ◽  
J. A. Gagnon ◽  
L. Brodeur

Botrytis leaf blight, caused by Botrytis squamosa, is a common and frequently damaging disease of onion crops, but the severity of epidemics varies widely from year to year. The disease is initiated and spread by airborne conidia. The relationship between airborne conidium concentration (ACC) and lesion development was studied in the field. A linear relationship was found between ACC and number of lesions per leaf: ACC values of 10 to 15 and 25 to 35 conidia m-3 were associated with 1 and 2.5 lesions per leaf, respectively. In 2000 and 2001, at three sites, four different criteria were used to start a fungicide spray program and their effect on epidemic development was compared with that of a grower's conventional schedule. The criteria were: at the fourth-true-leaf growth stage; according to an inoculum production index; when the ACC reached 10 to 15 conidia m-3; and when the ACC reached 25 to 35 conidia m-3. A nonsprayed control plot was included in the trial. Fungicide programs started when the ACC reached 10 to 15 conidia m-3 were as effective as the conventional program, but used fewer sprays. A fungicide spray program based on measurements of ACC and disease severity was evaluated in 2002 and 2003 in five and three commercial onion fields, respectively. At each site, half of the field was sprayed according to the grower's schedule and, in the other half, fungicide sprays were initiated when a threshold of 10 to 15 conidia m-3 or five lesions on the lower leaf (whichever came first) was reached. Overall, the number of fungicide applications was reduced by 75 and 56% in 2002 and 2003, respectively, without causing significant yield reduction. In both years, the reduction in number of fungicide applications was due mainly to the delay in initiation of the fungicide program.


Author(s):  
Laura ȘOPTEREAN ◽  
Loredana SUCIU ◽  
Ana Maria VĂLEAN ◽  
Felicia MUREŞANU ◽  
Carmen PUIA

The most important disease of maize in Romania are stalk and ear rot, which caused yield losses in average of 20%. The resistant hibrids represent one of the most efficient solution for reducing the field loses caused by Fusarium spp. on the maize (Nagy et al., 2006). Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi (Czembor et al., 2015). The purpose of this paper was to know more about the reaction of different maize hybrids to Fusarium and the evaluating the effect of ear rot on the yield ability and mycotoxins accumulation. The experiments carried out at ARDS Turda, during four years (2012-2015). The biological material was represented by 8 hybrids, from different maturity groups, tested in two infection conditions with Fusarium spp. (natural and artificial infections). The temperature and rainfalls of the four years of experiments corresponding to the vegetation of maize (april-september) are influenced favourably the pathogenesis of stalk and ear rot caused by Fusarium spp. and a good discrimination of the resistance reaction of genotypes. Fusarium ear rot has significantly affected production capacity and chemical composition of corn hybrids tested. In conditions of artificial infection with Fusarium spp. was a decrease in the content of starch, fat and increased protein content compared with artificially inoculated variants. The quantity of fumonizin B1+B2 has reached to 5630 μg/kg in conditions of artificial infection. There are negative correlations between production capacity and degree of attack of fusarium ear rot; depending on the reacting genotypes tested increasing disease causes production decrease. The response of maize hybrids to Fusarium infection is influenced by infection and climatic conditions. These factors affect production both in terms of quantity and quality and accumulation of mycotoxins.


Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 694-694 ◽  
Author(s):  
S. N. Smith ◽  
D. M. Helms ◽  
S. R. Temple ◽  
C. Frate

Fusarium wilt of blackeyed cowpeas has been known in California since the 1930s, and breeding for resistance to this disease pathogen has been a continuous effort. During the 1960s and 1970s, California Blackeye 5 (CB 5) cowpea (Vigna unguiculata L. Walp.), a widely grown cultivar of the time, became increasingly diseased by Fusarium oxysporum f. sp. tracheiphilum (Fot) Race 3 (2) throughout the growing regions of California. University of California cultivars CB 46 and CB 88 (1) were developed for resistance to Fot Races 1, 2, and 3. CB 46 is currently the principal blackeye cultivar grown on the majority of the acreage in the San Joaquin Valley. In 1989, a new race we designate “Fot Race 4” was isolated from wilted plants at a single field site in Stanislaus County. In years prior to identification, Fot Race 4 had caused severe wilt of CB 46 and CB 88 in this field. Even though the new Fot Race 4 remained confined to a small area for a number of years, sources of host plant resistance to Fot Race 4 were identified, hybridized, and screened, resulting in new progeny with desirable commercial agronomic characteristics. As observed in Stanislaus County, F. oxysporum f. sp. tracheiphilum Race 4 has the potential to cause serious crop damage, depending on virulence and soil inoculum levels, which may vary from year to year. In 1997 and 1998, an entirely different area in the southern San Joaquin Valley, about 140 miles from the original site in Stanislaus County, was found to have plants infected with Fot Race 4. Diseased plants were collected from patches in three separate CB 46 or CB 88 field sites in Tulare County. About 30 cultures were isolated from the diseased plants, which showed stunting, yellowing, and vascular discoloration. In greenhouse fusarium dip tests CB 46, CB 88, CB 5, and several Fot Race 4 resistant breeding lines were inoculated with all the collected isolates and evaluated. CB 46, CB 88, and CB 5 proved to be susceptible to these isolates, showing typical Fot Race 4 symptoms. The Fot Race 4 pathogen was then reisolated from greenhouse-grown, diseased stem tissue of CB 46, CB 88, and CB 5. These findings emphasize the importance of vigilance and necessity of continual disease surveys. They serve as an early alert for the University of California breeding program, and validate local cooperation with University of California Extension Farm Advisors. As a result of this effort new cultivar candidates with resistance to Fot Race 4 are in the final phases of multi-year commercial testing. References: (1) D. M. Helms et al. Crop Sci. 31:1703, 1991. (2) K. S. Rigert and K. W. Foster. Crop Sci. 27:220, 1987.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 179
Author(s):  
Tanika Thakur ◽  
Kshitija Sinha ◽  
Tushpinder Kaur ◽  
Ritu Kapoor ◽  
Gulshan Kumar ◽  
...  

Rice is a staple food crop for almost half of the world’s population, especially in the developing countries of Asia and Africa. It is widely grown in different climatic conditions, depending on the quality of the water, soil, and genetic makeup of the rice cultivar. Many (a)biotic stresses severely curtail rice growth and development, with an eventual reduction in crop yield. However, for molecular functional analysis, the availability of an efficient genetic transformation protocol is essential. To ensure food security and safety for the continuously increasing global population, the development of climate-resilient crops is crucial. Here, in this study, the rice transformation protocol has been effectively optimized for the efficient and rapid generation of rice transgenic plants. We also highlighted the critical steps and precautionary measures to be taken while performing the rice transformation. We further assess the efficacy of this protocol by transforming rice with two different transformation constructs for generating galactinol synthase (GolS) overexpression lines and CRISPR/Cas9-mediated edited lines of lipase (Lip) encoding the OsLip1 gene. The putative transformants were subjected to molecular analysis to confirm gene integration/editing, respectively. Collectively, the easy, efficient, and rapid rice transformation protocol used in this present study can be applied as a potential tool for gene(s) function studies in rice and eventually to the rice crop improvement.


Sign in / Sign up

Export Citation Format

Share Document